Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty

Authors: Javad Fotouhi, Clayton P. Alexander, Mathias Unberath, Giacomo Taylor, Sing Chun Lee, Bernhard Fuerst, Alex Johnson, Greg Osgood, Russell H. Taylor, Harpal Khanuja, Mehran Armand, Nassir Navab

Presenter: Wenhao GU

Review of Project

Objective:
Track the osteotom tool with respect to the pelvis in PAO using RGBD and X-ray images
Paper selection

Reasons:
- Shows the overall picture of how the camera-augmented C-Arm (CAMC) system works
- Similar to our project (RGBD and X-ray data is also used)
Background

Total hip arthroplasty (THA)

• Replace the damaged bone with prosthetic component.
• Proper implant placement is critical but challenging
• Use intraoperative fluoroscopy to guide the surgeon
Method

- Dislocation of the femoral head
- Reaming the acetabulum and removing the articular cartilage
- Identifying the size of the acetabular cup

Image acquisition
Acquiring two X-ray images from different perspectives (e.g. anterior-posterior and 15° oblique)

Intra-operative planning
Placing the acetabular cup simultaneously on two stereo X-ray images

AR visualization
Overlay of the planned cup and impactor and real-time cloud of points observed by the camera

Impactor alignment
Aligning the cloud of points from the impactor with the planned 3D impactor

Placing the acetabular component
Method

\[X' T_X = \text{RGBD'} T_{X'}^{-1} M^{-1} T_{\text{RGBD'}}^M T_{\text{RGBD}} \text{RGBD'} T_X \]
Method

- Dislocation of the femoral head
- Reaming the acetabulum and removing the articular cartilage
- Identifying the size of the acetabular cup

- Image acquisition
 - Acquiring two X-ray images from different perspectives (e.g., anterior-posterior and 15° oblique)

- Intra-operative planning
 - Placing the acetabular cup simultaneously on two stereo X-ray images

- AR visualization
 - Overlay of the planned cup and impactor and real-time cloud of points observed by the camera

- Impactor alignment
 - Aligning the cloud of points from the impactor with the planned 3D impactor

- Placing the acetabular component
Method
Results

• 10 different poses and 4 virtual perspectives of the surgical site for each pose
 o Translational error: 1.98 mm
 o Orientation error: 1.22 deg

→ Smaller than the navigation-based system (by Sato et al.)
 o Translational error: 2.98 mm
 o Orientation error: 4.25 deg
Assessment

• Pros:
 o Shows how the camera-augmented C-arm (CAMC) is used in a procedure
 o Reduced error compared with previous works

• Cons:
 o A visual marker needs be placed on the surgical site
 o Patient assumed to be static
 o Do not involve tracking of the cup