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Project Goal

* Training neural network to identify anatomical
landmarks in 2D fluoroscopic images.

* From Robert Grupp’s Project Introduction Slides
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Project Motivation

We want to solve for this transformation

X-Ray Detector between patient/CT and the C-Arm
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* From Robert Grupp’s 2D-3D Registration Slides
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Landmark Driven Registration

* Step 1: identify corresponding landmarks in pre-operative 3D model
and intra-operative 2D image.

e Step 2: Estimate the transformation by minimizing following cost
function.

argmin3 ;bS5 — P(6{:0)

* Currently, landmark annotation is manually done - time consuming

* This project aims to identify corresponding landmarks in intra-operative
2D fluoroscopic images, by deep neural network approach.

* From Robert Grupp’s 2D-3D Registration Slides
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Proposed Pipeline Overview
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Technical Approach Overview

* Regression Problem on Position

* Insight from other detection problems
* e.g. Convolutional Neural Network for position regression
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* Sofka, Michal, et al. "Fully convolutional regression network for accurate detection of measurement points."
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Technical Approach Overview

* Regression Problem on “HeatMap”

* Insight from other detection problems
* e.g. CNN architectures for heatmap regression.
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Fig. 1. Multiple landmark localization by regressing heatmaps in a CNN framework.

* Payer, Christian, et al. "Regressing heatmaps for multiple landmark localization using CNNs
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Additional Work

* Tool Extraction in Field of View - Segmentation
* Contour Detection - Edge Detection
* End to End Pose Estimation - No ldea
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Additional Work

* Tool Extraction in Field of View - Segmentation
e Contour Detection - Edge Detection

* More Realistic Simulation Data
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Additional Work

* Tool Extraction in Field of View - Segmentation
* Contour Detection - Edge Detection
* More Realistic Simulation Data
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* From MCGPU example image.
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Limitations

* Training data all from simulated osteotomies

* No soft tissue

* No change in intrinsics

* No tools in field of view (comparing to operation)
* Not enough real X-ray data for training
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Deliverables

 Minimum Deliverables:

* Environment setup and data preparation.
Initial network architecture validated on toy data set.
Network training on larger / refined data.
Accuracy Report by evaluated on simulated / real data.
Final Report / Poster.

* Expected Deliverables:

* Tools segmentation from field of view.
e Better simulation software involved.

e Maximum Deliverables:
* Edge / contour detection.
* Pose estimation.
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Dependencies

* Access to Data

e Simulated data with landmarks annotated for training.
* Already have initial training data set from Rob.

e Sophisticated simulated data for training.
* e.g., Soft tissue, tools.

* Real data set for test.

e Access to High Performance Computer
* Have permission to work on thiné.

* Access to Mentors
 Weekly meeting with Robert Grupp.
* Schedule meeting with Dr. Taylor as needed.
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Management Plan

e Source Code and Version Control via Github.
e Document control via Course Wiki.
* Weekly meeting with Robert Grupp.
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Key Milestones

e February 25: All simulated data obtained and validated.
* March 15: Environment and initial training network Set up.
* March 29: Deploy neural network for complete training data set.

e April 12: Evaluate accuracy in (simulated / real) test data set.
* Minimum Deliverables Achieved.

e April 19: Utilize advanced software for simulated data.

* April 19: Training network for segment tools in field of view.
* Expected Deliverables Achieved.

* May 03: Training network for contour detection.
 Maximum Deliverables Achieved.

 May 11: Final Report / Poster Session.
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Detailed Task Schedule

Minimum Deliverables
Project Proposal
Environment Set Up
Initialize Neural Network
Seminar Report
Training on Larger data
Training on Better Simulation
Evaluating Accuracy
Final Report / Poster
Expected Deliverables
Tools in field of view
Simulation Software
Maximum Deliverables
Contour Detection

Pose Estimation
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Reading List

 Feature Detection:

e Evaluation and Comparison of Anatomical Landmark Detection Methods
for Cephalometric X-Ray Images: A Grand Challenge

* Regressing Heatmaps for Multiple Landmark Localization using CNNs

* Integrating geometric configuration and appearance information into a
unified framework for anatomical landmark localization

* Fully convolutional regression network for accurate detection of
measurement points

* U-Net: Convolutional Networks for Biomedical Image Segmentation
* Human pose estimation via Convolutional Part Heatmap Regression

e Simultaneous Multi-Person Detection and Single-Person Pose Estimation
With a Single Heatmap Regression Network

 Efficient Object Localization Using Convolutional Networks
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Reading List

e X-ray Simulation:
* Accelerating Monte Carlo simulations of photon transport in a voxelized
geometry using a massively parallel graphics processing unit
* Monte Carlo Simulation of X-Ray Imaging Using a Graphics Processing Unit
* Geant4-based Monte Carlo simulations on GPU for medical applications

* A GPU tool for efficient, accurate, and realistic simulation of cone beam CT
projections
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Thank you for listening.



