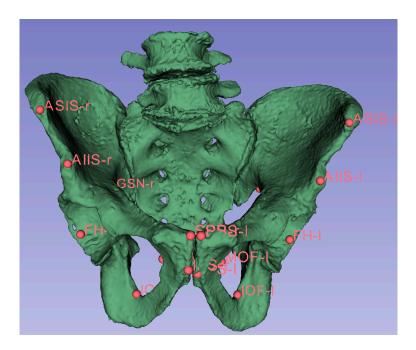
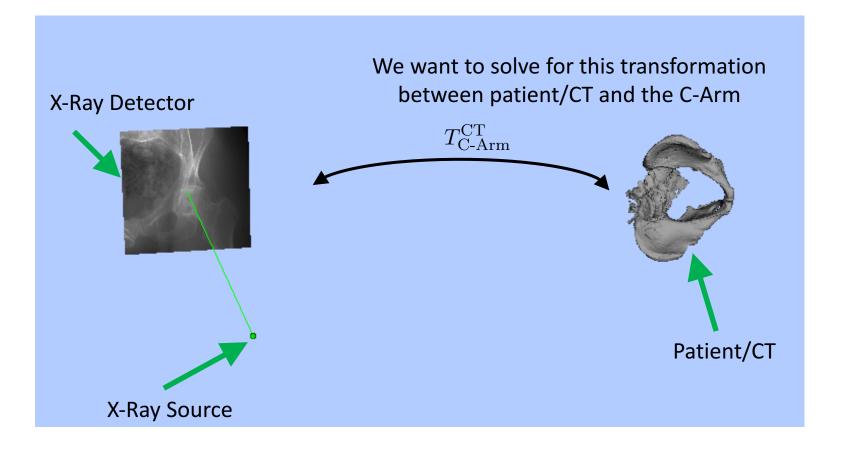
Deep Learning in Fluoroscopic Feature Detection

Liujiang Yan


Mentors: Robert Grupp, Dr. Russell Taylor

Project Goal


• Training neural network to identify anatomical landmarks in 2D fluoroscopic images.

Project Motivation

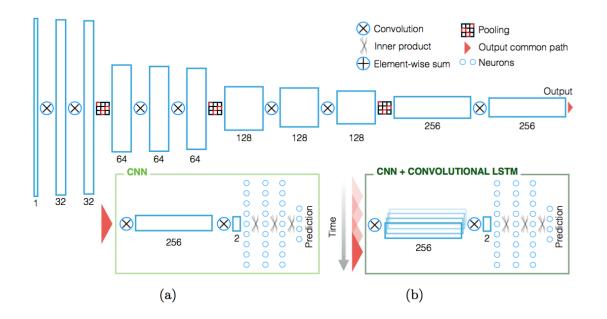
* From Robert Grupp's 2D-3D Registration Slides

Landmark Driven Registration

- Step 1: identify corresponding landmarks in pre-operative 3D model and intra-operative 2D image.
- Step 2: Estimate the transformation by minimizing following cost function.

$$\underset{\theta \in SE(3)}{\operatorname{arg\,min}} \sum_{i} \frac{1}{2} \left\| \mathbf{p}_{2\mathrm{D}}^{(i)} - \mathcal{P}(\mathbf{p}_{3\mathrm{D}}^{(i)}; \theta) \right\|_{2}^{2}$$

- Currently, landmark annotation is manually done time consuming
- This project aims to identify corresponding landmarks in intra-operative 2D fluoroscopic images, by deep neural network approach.


Proposed Pipeline Overview

Technical Approach Overview

- Regression Problem on Position
- Insight from other detection problems
 - e.g. Convolutional Neural Network for position regression

* Sofka, Michal, et al. "Fully convolutional regression network for accurate detection of measurement points."

Technical Approach Overview

- Regression Problem on "HeatMap"
- Insight from other detection problems
 - e.g. CNN architectures for heatmap regression.

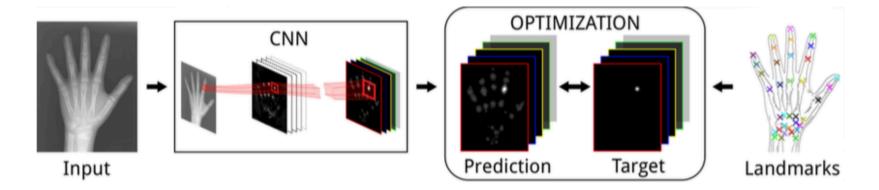
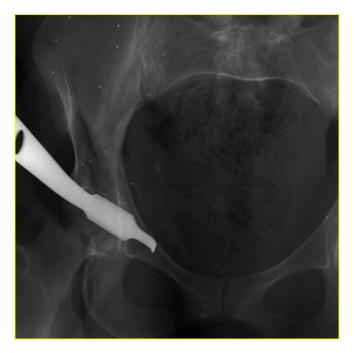
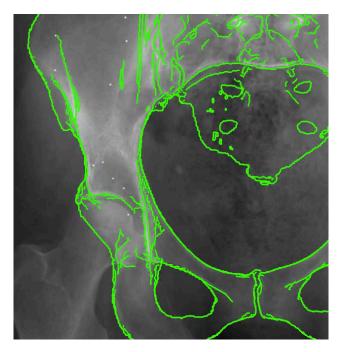
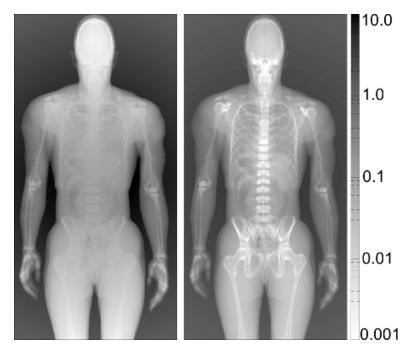



Fig. 1. Multiple landmark localization by regressing heatmaps in a CNN framework.

Additional Work


- Tool Extraction in Field of View Segmentation
- Contour Detection Edge Detection
- End to End Pose Estimation No Idea

Additional Work


- Tool Extraction in Field of View Segmentation
- Contour Detection Edge Detection
- More Realistic Simulation Data

Additional Work

- Tool Extraction in Field of View Segmentation
- Contour Detection Edge Detection
- More Realistic Simulation Data

* From MCGPU example image.

Limitations

- Training data all from simulated osteotomies
- No soft tissue
- No change in intrinsics
- No tools in field of view (comparing to operation)
- Not enough real X-ray data for training

Deliverables

- <u>Minimum Deliverables:</u>
 - Environment setup and data preparation.
 - Initial network architecture validated on toy data set.
 - Network training on larger / refined data.
 - Accuracy Report by evaluated on simulated / real data.
 - Final Report / Poster.
- Expected Deliverables:
 - Tools segmentation from field of view.
 - Better simulation software involved.
- Maximum Deliverables:
 - Edge / contour detection.
 - Pose estimation.

Dependencies

- Access to Data
 - Simulated data with landmarks annotated for training.
 - Already have initial training data set from Rob.
 - Sophisticated simulated data for training.
 - e.g., Soft tissue, tools.
 - Real data set for test.
- Access to High Performance Computer
 - Have permission to work on thin6.
- Access to Mentors
 - Weekly meeting with Robert Grupp.
 - Schedule meeting with Dr. Taylor as needed.

Management Plan

- Source Code and Version Control via Github.
- Document control via Course Wiki.
- Weekly meeting with Robert Grupp.

Key Milestones

- February 25: All simulated data obtained and validated.
- March 15: Environment and initial training network Set up.
- March 29: Deploy neural network for complete training data set.
- April 12: Evaluate accuracy in (simulated / real) test data set.
 - Minimum Deliverables Achieved.
- April 19: Utilize advanced software for simulated data.
- April 19: Training network for segment tools in field of view.
 - Expected Deliverables Achieved.
- May 03: Training network for contour detection.
 - Maximum Deliverables Achieved.
- May 11: Final Report / Poster Session.

Detailed Task Schedule

Task	02/22	03/01	03/15	03/29	04/05	04/12	04/19	04/26	05/03	05/10
Minimum Deliverables										
Project Proposal										
Environment Set Up										
Initialize Neural Network										
Seminar Report										
Training on Larger data										
Training on Better Simulation										
Evaluating Accuracy										
Final Report / Poster										
Expected Deliverables										
Tools in field of view										
Simulation Software										
Maximum Deliverables										
Contour Detection										
Pose Estimation										

Reading List

- Feature Detection:
 - Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge
 - Regressing Heatmaps for Multiple Landmark Localization using CNNs
 - Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization
 - Fully convolutional regression network for accurate detection of measurement points
 - U-Net: Convolutional Networks for Biomedical Image Segmentation
 - Human pose estimation via Convolutional Part Heatmap Regression
 - Simultaneous Multi-Person Detection and Single-Person Pose Estimation With a Single Heatmap Regression Network
 - Efficient Object Localization Using Convolutional Networks

Reading List

- X-ray Simulation:
 - Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit
 - Monte Carlo Simulation of X-Ray Imaging Using a Graphics Processing Unit
 - Geant4-based Monte Carlo simulations on GPU for medical applications
 - A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections

References:

- Payer, Christian, et al. "Regressing heatmaps for multiple landmark localization using CNNs." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016.
- Sofka, Michal, et al. "Fully convolutional regression network for accurate detection of measurement points." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2017. 258-266.
- Ghammraoui, B., et al. "Including the effect of molecular interference in the coherent x-ray scattering modeling in MC-GPU and PENELOPE for the study of novel breast imaging modalities." Medical Imaging 2014: Physics of Medical Imaging. Vol. 9033. International Society for Optics and Photonics, 2014.

Thank you for listening.