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Introduction
• Introduced convolutional pose machines for anatomical landmark 

detection in simulated X-Ray images;
• Introduced holistically-nested networks for contour detection in 

simulated X-Ray images and transferred to real X-Ray images;
• Developed random region mask as data augmentation to simulate 

tool in the field;
• Perform thorough and detailed experiments to evaluate the 

models’ performance under different data. Figure 1 System Pipeline

Figure 2 Landmark Detection. Red: Prediction, Green Target

Figure 4 Contour Detection. Top: Target, Bottom: Prediction

Outcomes and Results
• Achieved the minimum deliverables on landmark detection 

by using convolutional pose machines, and performed 
experiments to analyze the performance and limitations.

• Achieved the medium deliverables on tools in field of  view
by introducing random region mask as data augmentation

• Achieved the maximum deliverables on contour detection by 
utilizing HED network, and successfully transferred the model 
trained by soft tissue simulated data to real measured X-ray data.

• Not gathering more complex simulated data.
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Future Work
• Network Architecture: The basic block for these networks are 

pure convolution and pooling layer, and could be replaced by 
other well-performed alternatives: residual layer, U-Net.

• Transfer Learning: Model trained on simulated data does not 
perform well on real X-Ray data. A potential approach is to fine-
tune the model by real X-Ray data and then evaluate. 

• Evaluation Metric: While the pixel distance gives an intuitive 
measure about the performance, the led 2D-3D transformation 
difference will be more straightforward.

Data Augmentation
• randomly mask a region of  arbitrary shape, arbitrary size, and 

arbitrary constant intensity to simulate tool in the field.

Figure 6 Random Region Mask as Data Augmentation

Landmark Detection
• Convolutional pose machines consist a sequence of  convolutional 

networks that repeatedly produce 2D belief  map for each part.
• Belief  maps at each stage represent the non-parametric encoding 

of  the spatial uncertainly of  the location for each part.

• The objective is to minimize the L2 distance defined by the belief  
map from each stage and the target belief  map for each part.

𝐹 =###||𝑏&
' 𝑥 − 𝑏*&

' (𝑥)||--
�

/

012

'

3

&42

3x3
C

2x
P

3x3
C

2x
P

3x3	
C

3x3
C

3x3
C

3x3	
C

2x
P

3x3	
C

2x
P

3x3
C

3x3
C

3x3	
C

2x
P

3x3
C

3x3
C

3x3
C

1x1
C

1x1
C

1x1
C

1x1
C

1x1
C

1x1
C

𝐿 = # −𝛽 # log 𝑦; = 1 𝑋 − (1 −
�

;∈?@
𝛽) # lo g( 𝑦; = 0|𝑋B

�

;∈?C

312

&42

Contour Detection
• The architecture consists of  a VGG convolutional net for multi-

scale feature learning, and assign a side output at each stage, and a 
fusion layer aggregating all stages.

• The objective is to minimize class-weighted cross entropy defined 
at each side output and fusion output.

Figure 3 Selected Landmarks Prediction Error

Hard Tissue Soft Tissue Real X-Ray

Hard Tissue Soft Tissue Real X-Ray

Figure 5 Edge Map Distance Transform Measure
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