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Motivation

* Feature Detection for 2D-3D Registration
e Anatomical LLandmark Detection

 Contour Detection

X-Ray Source

Pre- Operauve 3D Model

[1] Wikipedia contributors. (2018, March 17). Pelvis. In Wikipedia, The Free Encyclopedla Retrieved 17:09, April 9, 2018.
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Papers Discussed Today

e Human Pose Detection

* Wei, Shih-En, et al. "Convolutional pose machines." Proceedings of the
IEEE Conterence on Computer Vision and Pattern Recognition. 2016.

* Edge Detection

* Xie, Saining, and Zhuowen Tu. "Holistically-nested edge detection.”
Proceedings of the IEEE international conference on computer vision.

2015.
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Convolutional Pose Machine

* Designed for human pose estimation task

* Sequential architecture composed of convolution layers to implicitly
modeling long-range dependencies

* Perform belief map regression instead of pixel position

* Alleviate gradient vanishing by intermediate supervision
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Network Architecture

* Feature extractor at each stage (x)

. Weight sharing among stages
* Representation for the original image for following classification use
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Network Architecture

* Classifier at each stage (gt)
* Takes previous stage output and feature extracted as input

* Receptive field grows larger with deeper network
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Results and Discussions

* State of the art performance on single human pose estimation task.
* Weight sharing for feature extractor
* Inexplicit long range dependencies modeling

* Intermediate supervision (MSE loss for each stage)
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Results and Discussions
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Figure 8: Quantitative results on the MPII dataset using the PCKh metric. We achieve state of the art performance and outperform significantly on
difficult parts such as the ankle.
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Figure 9: Quantitative results on the LSP dataset using the PCK metric. Our method again achieves state of the art performance and has a significant
advantage on challenging parts.
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Application

* Fixed number key point regression problem

* Beliet map as uncertainly measure
* Threshold poor predictions to make robust registration
* Embed uncertainty into optimization objective function
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Holistically-Nested Edge Detection

* Holistic image training and prediction
* Multi scale feature learning through deep neural networks
* Completely differentiate framework

* Implicitly long range dependencies capture without graphical model

¥ 3 :
(a) original image
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Network Architecture

* Utllize VGG (convolutional parts) as basic block for feature extraction
* With network going deeper, the features are extracted locally to globally
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Network Architecture - Training

* Side output at each stage

Input image X
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Network Architecture - Prediction

* Obtain side outputs and fused output from the network
yfuse y(O, . YM) = HED(X.(W.w, h))
* Agoregate these predictions for final result
YHED = querage(YFuse,y(D), . y(M)
* Perform non maximum suppression for thinned edges result.

yFinal — non max suppression (YHED)



Results

* State of the art performance

* fixed contour threshold (ODS)
* Per-image best threshold (OIS)
* Average precision (AP)
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Table 4. Results on BSDS500. *BSDS300 results,fGPU time

ODS OIS AP FPS
Human .80 .80 - -
Canny 600 .640 580 | 15
Felz-Hutt [©] 610 .640 .560 | 10
BEL [5] 660x - - 1/10
gPb-owt-ucm [ 1] 726 757 .696 | 1/240
Sketch Tokens [24] | .727 .746 780 | 1
SCG [31] 739 758 773 | 1/280
SE-Var [6] 746 767 803 | 2.5
OEF [ 3] 749 772 817 | -
DeepNets [21] 738 759 758 | 1/5%
N4-Fields [10] 753 769 784 | 1/6¢
DeepEdge [2] 753 772 807 | 1/10%%
CSCNN [19] J56 7715 198 | -
DeepContour [34] 756 773 797 | 1/307
HED (ours) 782 .804 .833 2.51,
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Application

* Contour detection in X-Ray images

* Flexibility of basic blocks of HED
* e.g. ResNet, Fully Convolutional Net, U-Net

* Predicted feature map has uncertainty measure about edges
* Threshold weak edges

* Embed into registration method
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Conclusion

* Utilize deep neural network as feature extractor and classifier.
* Implicitly model long range dependencies by composing conv layers.
* Alleviate gradient vanishing by intermediate supervision.

* Uncertainty measure as extra information for registration.



