Force Sensing Drill/Cutter Tool for Skull Base Surgery

Prasad Vagdargi, Brandon Tran, Nick Skacel Midpoint Presentation

Overview

- Galen Robot: Hand-over-hand cooperatively controlled surgical robotic system used for head and neck microsurgery.
- For some applications it is useful to measure and control the tool-to-tissue forces as well.
- **Goal:** To sense these forces and integrate this data for better control of the Galen robot
- Applications:
 - Visualization of forces
 - Safety limits
 - Surgical skill evaluation
 - Unbiased comparison of surgical techniques

Mentors and Team Roles

Mentors

- Dr. Russell Taylor
- Galen Surgical: Paul Wilkening, Yunus Sevimli, David Levi
- Johns Hopkins Medicine: Francis Creighton, MD and Chris Razavi, MD

Roles

- Team Leader and Mechanical Design: Prasad Vagdargi
- Electronic Design: Brandon Tran & Nick Skacel
- Communications/Software: Nick Skacel
- Controls: Brandon Tran

Dependencies

Dependency	Status	Deadlines		
Order for new force sensors, DAQ board	Completed Backup: Work with ATI force sensors	Will work on ATI sensors by March 15 if needed		
Access to Galen UI for DAQ to Robot communication	Completed: Discussed with Paul	None		
Access to 3D printing facilities	Completed	None		
Access to Mock OR	Completed	None		
Drill Prototype for calibration	Completed: 11 April	None		

Design Iterations

• We went through multiple iterations for designs in smaller profiles

Final Design

Final Design and Video

Plotosaurus for Data Collection

- Courtesy of the BLAM lab for their hand rehabilitation device
- Each "Finger" corresponds to a force sensor
- The three lines in "Finger 2" show the XYZ forces being applied to the 2nd force sensor
- The other fingers show no forces being applied to the corresponding sensors
- Y axis shows the force applied and the X axis shows the time in seconds

DAQ Sample Output

	Deviation from expected sample															
Time	period(us)	FS 1 Fx	FS 1 Fy	FS 1 Fz	FS 2 Fx	FS 2 Fy	FS 2 Fz	FS 3 Fx	FS 3 Fy	FS 3 Fz	FS 4 Fx	FS 4 Fy	FS 4 Fz	FS 5 Fx	FS 5 Fy	FS 5 Fz
331.239	0	0.999	0.026	0.024	0.999	0.034	0.526	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.24	0	0.999	0.026	0.024	0.999	0.034	0.526	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.241	0	0.999	0.026	0.024	0.999	0.034	0.526	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.242	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.243	0	0.999	0.026	0.024	0.999	0.034	0.528	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.244	0	0.999	0.026	0.024	0.999	0.034	0.528	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.245	0	0.999	0.026	0.024	0.999	0.034	0.526	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.246	0	0.999	0.026	0.024	0.999	0.034	0.528	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.025
331.247	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.495	0.999	0.492	0.999	0.024	0.025
331.248	0	0.999	0.026	0.024	0.999	0.034	0.528	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.249	0	0.999	0.026	0.024	0.999	0.034	0.528	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.25	0	0.999	0.026	0.024	0.999	0.034	0.527	0.495	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.251	0	0.999	0.026	0.024	0.999	0.034	0.526	0.495	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.025
331.252	0	0.999	0.026	0.024	0.999	0.034	0.526	0.495	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.253	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.254	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.025
331.255	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.256	0	0.999	0.026	0.024	0.999	0.034	0.526	0.494	0.024	0.022	0.495	0.999	0.493	0.999	0.024	0.024
331.257	0	0.999	0.026	0.024	0.999	0.034	0.527	0.494	0.024	0.022	0.496	0.999	0.493	0.999	0.024	0.024

- The DAQ calculates the XYZ forces on the sensors
- Outputs a .txt file that contains time, deviation from sampled period, and xyz forces for each sensor

Calibration Plan

- The Galen system has a built in force sensor
- We can transform the tool-to-robot force to tip force
 - Rigid bodies and known tool lengths
 - Galen system provides tool angle measurements for the transformation
- For the drill forces we are able to produce a .txt file with the transformed uncalibrated xyz forces (12 readings in total)
- Similarly, we can produce a .txt file with "known" tooltip forces
 - Galen force sensor readings and computed transformation based on angle measurements and fixed lengths
- Solving a least squares problem (CIS 1)
 - o $A\vec{x} = \vec{b}$ where A would be an n by 12 matrix of drill forces and b would be the Galen forces

Problems Faced

- 1. Initial prototype for calibration took longer than we expected
- 2. Cables that we had were too short
 - a. Have to hold the DAQ during calibration
- 3. 3D printed parts too weak to hold drill, switched to metal interface between drill and sensor
- 4. Assembly was initially complicated: Redesign
- 5. Sensors are being calibrated by the BLAM Lab
 - a. Sensors output forces, but not calibrated XYZ newton force

Hall Effect Force Sensing

- Hall Effect sensor: varies output voltage based on magnetic field
- Magnet inside elastomer
 - Elastomer: polymer having elastic qualities
- Hall voltage can be calibrated to xyz force readings
- Advantages: sensors are smaller, drill to sleeve contact with elastomer/flexure material easier to build than current design

Deliverables

- Minimum
 - Design and prototype force sensing tool holder
 - Provide forces sensing at the tooltip
- Expected
 - Design iteration for ergonomics
 - Provide calibrated XYZ force sensing at the tooltip
 - Design and Print PCBs for Hall Effect sensor
- Maximum
 - Create virtual fixtures using drill force measurements.
 - Test Hall Effect sensors, design HE sensor drill
 - Test using Galen robot on phantom skulls and measure tooltip forces

Schedule

Original Milestones

Initial Prototype Manufacture	Feb. 25
Order/Test Sensors	Mar. 1
Test fixture development	Mar. 10
Calibration and Analysis	April 1
UI design	April 12
Safety limits testing	April 28
Presentation	May 12

Updated Milestones

Initial Prototype Manufacture	Completed
Order/Test Sensors	Completed
Calibration and Analysis	19 April
Modify Design for Ergonomics	20 April
Design and Print HE PCB	23 April
Assemble HE sensor	4 May

Documentation: Design

Reading List

- Y. Hu, H. Jin, L. Zhang, P. Zhang and J. Zhang, "State Recognition of Pedicle Drilling With Force Sensing in a Robotic Spinal Surgical System," in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 357-365, Feb. 2014.
- P. Kazanzides, J. Zuhars, B. Mittelstadt and R. H. Taylor, "Force sensing and control for a surgical robot," Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice, 1992, pp. 612-617 vol.1.
- Force of Cochlear Implant Electrode Insertion Performed by a Robotic Insertion Tool: Comparison of Traditional Versus Advance Off-Stylet Techniques, Daniel Schurzig, Robert J. Webster III, Mary S. Dietrich, and Robert F. Labadie, Otology & Neurotology, 2010
- T. Paulino et al., "Low-cost 3-axis soft tactile sensors for the human-friendly robot Vizzy," 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 966-971.

Problem: Material for interface

