Auto-Segmentation of Spine CT for Data-Intensive Analysis of Surgical Outcome

Group 21
Niko Eng
Team Members and Mentors

Team Members

Ben Ramsay
Biomedical Engineering 2018

Niko Eng
Biomedical Engineering 2018

Mentors

Tharindu De Silva, PhD
Post-Doctorate at I-STAR Lab

Jeffrey Siewerdsen, PhD
Professor
Dept. of Biomedical Engineering
Dept. of Computer Science

Presentation photos courtesy of I-STAR Lab
Project Goals

• Overall: To Develop and Test the “max-flow/min-cut” segmentation method for spine CT images

• **Main Deliverable 04/20:** Accurate segmentation of N=200 spine CT dataset provided by Dr. Siewerdsen
Paper Selection

Fast Approximate Energy Minimization via Graph Cuts

Yuri Boykov Olga Veksler Ramin Zabih
Computer Science Department
Cornell University
Ithaca, NY 14853

Why Selected?
• Generalized approach on how to use graph cuts to minimize a variety of energy functions
 • One application is segmentation among others (i.e. stereo, image restoration, motion)
• Binary label segmentation of Spine CTs based off of implementation of theory in paper

1999
Conference Paper
International Conference for Computer Vision

2001
Journal Paper IEEE
Transactions on PAMI, vol. 23, no. 11, pp. 1222-123
Paper Background

Computer vision problems can be naturally formulated into energy minimization:

\[E(f) = E_{\text{smooth}}(f) + E_{\text{data}}(f). \]

For a labeling \(f \)

- Quantifies the similarity of neighboring pixels based on measurables (i.e. intensity)
- Quantifies how labeling compares to observed data / priors

Determining the global minima is often difficult due to computational costs, many local minima, and large possible label space
Paper Goals

• How does one minimize an energy function in a quick and computationally efficient manner?

• Previous Method: Simulated annealing
 • Can approach the global minimum of arbitrary energy function
 • **Standard Moves** — can only do single pixel changes at each iteration
 • Exponential in time

• Explored Methods: Graph Cuts
 • α-β swaps
 • α-expansion
 • Large moves — many pixels’ labels can change at each iteration
 • For binary labelling **global minimum** can be reached in **polynomial** time
Max-Flow Min-Cut Explanation (Segmentation Example)
α - β swap

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each pair of labels $\{\alpha, \beta\} \subset \mathcal{L}$
 3.1. Find $\hat{f} = \arg\min E(f')$ among f' within one α-β swap of f (Section 3)
 3.2. If $E(\hat{f}) < E(f)$, set $f := \hat{f}$
 and success := 1
4. If success = 1 goto 2
5. Return f
\(\alpha \) - Expansion

1. Start with an arbitrary labeling \(f \)
2. Set success := 0
3. For each label \(\alpha \in \mathcal{L} \)
 3.1. Find \(\hat{f} = \arg\min E(f') \) among \(f' \) within one \(\alpha \)-expansion of \(f \) (Section 4)
 3.2. If \(E(\hat{f}) < E(f) \), set \(f := \hat{f} \) and success := 1
4. If success = 1 goto 2
5. Return \(f \)
Experimental Results on Image Restoration

α – Expansion

Annealing

α - β swap

Diamond image (input)

Our method (E_2)

Annealing (E_1)

Our method (E_1)

<table>
<thead>
<tr>
<th>E</th>
<th>E_{smooth}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our results</td>
<td>Annealing</td>
</tr>
<tr>
<td>Diamond (image restoration, E_1)</td>
<td></td>
</tr>
<tr>
<td>First cycle ($t = 36$)</td>
<td>1,577</td>
</tr>
<tr>
<td>Last cycle ($t = 389$)</td>
<td>1,472</td>
</tr>
<tr>
<td>Best annealing ($t = 417, 317$)</td>
<td>—</td>
</tr>
</tbody>
</table>

Simulated annealing Our method
Conclusion / Paper Assessment

Pros
• Generalizable to many computer vision problems (i.e. segmentation, stereo, image restoration, motion)
• Computationally efficient and speedy when compared to the then-current algorithms
• Binary labelling guarantees reaching global minimum
• For multi-labeling with α-expansion, minima has guaranteed bounds of a factor within global minimum

Cons
• The Smoothness Functions are limited to pairs of adjacent pixels
• Graph cut methods take a discrete approach
Reading List
