Automation of Mosquito Dissection for Malaria Vaccine Production

Computer Integrated Surgery II
February 26, 2019

Group 1: Michael Pozin, Henry Phalen, Alexander Cohen

Mentors:
Drs. Russell Taylor, Iulian Iordachita
Background

- Working as part of larger LCSR effort
- Small Business Innovation Research (SBIR) grant from NIH with Sanaria Inc.
- Sanaria has developed a methodology to produce a **malaria vaccine**
- Malaria is spread by a parasite (**Plasmodium falciparum**) that grows in the salivary glands of mosquitoes (**anopheles**)

SANARIA

MALARIA ERADICATION THROUGH VACCINATION

Confidential
Clinical Motivation

• Malaria is a **global** health problem

• Estimated malaria deaths 2015:
 • 438,000\(^1\)
 • 666,000\(^2\)
 • 730,500\(^3\)

• Estimated clinical cases 2015:
 • 214,000,000\(^1\)

• >$12B GDP loss in Africa alone\(^{1,4}\)

From WHO World Malaria Report 2016

The Project

- To develop the vaccine, mosquitoes are bred, infected, dissected, and their salivary glands harvested and purified.
- The harvested parasite sporozoites become the vaccine agent.

Current Dissection Procedure:

- Major bottleneck to vaccine production:
 - 5-6 mosquitoes per minute after several months of training.
Prior Work

• A team from LCSR created a mechanical system to increase efficiency
• Training time reduced to ~1.5 weeks

1. Place mosquito neck between a pair of blades
2. Squeeze out the salivary gland (and some “guts”)
An Automated Approach

• Our goal is to develop an automated mosquito dissection system

Staged Mosquitoes → Dissection System → Salivary glands

Within a Larger System:

1. Mosquito separation
2. Mosquito pick-and-place
3. Mosquito dissection
4. Mosquito recognition (throughout)
Technical Approach: Outline

1. Minor changes to robotic pick-and-place assembly
 ○ Mosquito alignment slot geometry

2. Development of current dissection system
 ○ Redesign of downstream processes
 ○ Verification testing

3. Multi-component integration
 ○ Timing & Code
 ○ Systems out of Control (Vision & Feeding/Staging System)

4. Rotary Stage Design
 ○ Develop rotating cartridge design for integration with pre-existing and developed modules
Robot Setup

Decapitation blades

Behind-blade camera

Micro-gripper

Cartridge

Overhead camera

Cartesian stage
1. Changes to Pick-and-Place System

- Robot can take an image location, navigate to the site, grasp a mosquito, position between blades
- Bernstein polynomial calibration
- No downstream processing attempted
- ~85% accuracy - hope to improve this
 - Minor changes to mechanical geometry
 - Better use of information from vision
2. Development of current dissection system

- Redesign and test downstream processes
 1. Cutting 😊
 2. Squeezing 😞
 3. Gland Collection 😞
 4. Wash 😞
3. Multi-system integration

- Multi-component timing
 - Single time bottleneck (most likely robot motion)
 - Simultaneous actuation at multiple levels of system

- Code
 - High-level system control
 - ROS topics
 - Serial communication with microcontrollers

- Integration with systems out of our control
 - Vision, mosquito feeding/staging
4. Rotary Stage Design

- Linear system will provide proof-of-concept of modules
- Rotary system will be developed to allow for a more streamlined process
Milestones

- **2/26**: Physical Prototype of Gland Collection Apparatus
 - **MP AC 3/4**

- **3/12**: High-level Code for Robot/Dissector Integration Completed
 - **HP 3/12**

- **3/18**: Dissector Installed on Robot Setup
 - **MP AC 3/18**

- **3/26**: Results from Preliminary Integration Testing Completed
 - **HP 3/26**

- **4/9**: Preliminary Testing Report
 - **4/1**

- **4/10**: Implement Mechanical Changes, Finalize Rotary Design
 - **AC MP 4/10**

- **4/15**: Test with 100+ Mosquitoes
 - **HP 4/23**

- **5/7**: Formal report on Vision System Integration and Systems Level Approach
 - **5/7**

- **5/7**: Vision System Integration
 - **HP 4/29**

Responsible Member’s Initials

- **Key deliverable**
<table>
<thead>
<tr>
<th>MIN</th>
<th>03/26/19</th>
<th>Video of a mosquito processed from presentation to body disposal, specifically: Presentation → Pick & Place → Decapitation → Squeeze → Gland Collection → Body Disposal</th>
</tr>
</thead>
</table>
| IDEAL | 04/23/19 | Written report detailing system integration (no vision), automated dissection of 50+ mosquitoes
Written report of design concept of rotary stage |
| MAX | 05/07/19 | Written report on system integration (with vision), automated dissection of 100+
Physical prototype of rotary stage concept |
Dependencies

Dependency	Solution	Date Expected	Date Required	Mitigation

Access to shared setup, computer, robot in Robotorium	Coordinate with collaborators	2/26	2/28	Perform testing in off-hours
Access to Lab Pod, JH Box (Alex)	Ask Dr. Taylor for Access	2/28	2/28	N/A
Access to mosquitos (weekly basis)	Email colleagues and Sanaria to coordinate pickup	Weekly	Weekly	No testing that week, or unofficial testing with old mosq's or those in ethanol
Interface with computer vision system	Rely on collaborators to continue development	3/15	4/23	Continue to use manual user-click commands
Upstream mosquito staging system	Rely on collaborators to continue development	4/1	4/23	Dissection system can be demonstrated with human-staged mosquitoes
Money for mechanical development (e.g new stage, fabrication costs, etc.)	Ask mentors as needed - grant has funding	As needed	As needed	Use what resources are available
Continued functionality of recently redesigned micro gripper	Rely on collaborators to continue ongoing improvements	2/26	2/28	Complete redesign ourselves, possibly adjust project goals
Management Plan

Project Lead: Henry

Group Meetings: Monday Noon - 1PM, Friday Noon - 3PM

➢ Robot control, high-level code, integration: Henry
➢ Downstream dissection: Michael & Alex
➢ 2nd generation system design: Alex

Organizational Items:
● Weekly meetings with mentors and collaborators (Mondays 9-10AM)
● Any code stored in current project private Git repo
● Communication via Slack (Instant Messaging) and email
● All documentation stored in project JH Box and on course website
Questions?