Seminar Paper Presentation:
Software Architecture of the da Vinci Research Kit
Zihan Chen et. al
Anurag Madan (Group 3)
3/5/19
Computer Integrated Surgery II
Background

• Telerobotic systems have a proven track record in several application domains
• Mostly direct teleoperation in robotic systems, largely due to lack of a robust common research platform
• Recently addressed by platforms like DVRK
DVRK system overview

• Mechanical components
 • 2 Master Tool Manipulators
 • 2 Patient Side Manipulators
 • High Resolution Stereo Viewer
 • Footpedal tray

• Electrical components
 • FPGA Board
 • Quad linear amplifier
Goal

• Provide a common research platform for the DVRK
 • Scalable
 • Reconfigurable
 • Real-time
 • ROS compatible
Scalable and Reconfigurable Hardware Interface

• Design goals
 • Provide deterministic performance with low latency – minimize total number of communication transactions
 • Support daisy chain connections – allows scalability and reconfigurability by introducing a different control PC
 • Sufficient bandwidth for all hardware

• Design analysis
 • FireWire used to implement daisy chain
 • Ethernet port used as bridge between PC and FireWire network
Scalable and Reconfigurable Hardware Interface

• Implementation
 • Use FireWire broadcast and P2P connection
 • Query, and wait for 5N us, N being number of boards
 • Each board broadcasts feedback after 5n us, n being node number
 • PC reads complete status information from one board, broadcasts control as single packet.
 • Each board extracts own commands based on node number
 • Ethernet used by PC to communicate with first board, FPGA firmware communicates between boards via FireWire network
Real Time Framework

• Design goals
 • A component-based framework, with well-defined interfaces between components
 • Efficient communication between components to support control rates of 1 kHz or more

• Design analysis
 • Using ROS subscriber gets reliable data transmission between controllers of different frequency
 • ROS publisher and subscriber have significant communication latency for high frequency controllers
 • Using multi-threaded component like JHU CISST reduces latency
Real Time Framework

ROS to ROS latency spin()

- **Samples** = 27278
- **Mean** = 244.4531 us
- **Max** = 2128.84 us

Experiment Setup:
- 1 publisher and 1 subscriber node
- On single computer
- Publisher runs at 1 kHz

cisst to cisst latency ExecIn/Out

- **Samples** = 26268
- **Mean** = 21.3084 us
- **Max** = 115.156 us

Experiment Setup:
- 1 producer and 1 consumer component
- On single computer
- Components run at 1 kHz
Real Time Framework

• Implementation
 • Shared memory, multi-threaded design is better suited for the high frequency, low-latency control requirements for the dVRK
 • Extend from hardware interface to low level and mid level controller
System ROS integration

• CISST to ROS Bridge
 • Bridge based design to communicate between CISST and ROS
 • Contains a CISST publisher and subscriber, conversion functions, and bridge component
 • CISST converted to Catkin packages, allows for easier access from ROS
 • Robot models converted to URDF format for simulation purposes
Conclusion and Relevance

• Presented a scalable, reconfigurable, real-time and ROS-compatible software architecture for DVRK
 • distributed hardware interface
 • real-time component-based framework with multi-threading
 • High level integration with the ROS ecosystem

• CISST architecture used to run many robots, and software element of project will involve this architecture.
References