
Code Documentation

Robotic Ultrasound Assistance

via Hand-Over-Hand Control

EN 601.656 Computer Integrated Surgery II

Kevin Gilboy
Computer Engineering M.S.E. Student

kevingilboy@jhu.edu

mailto:kevingilboy@jhu.edu

Table of Contents

Table of Contents . i

File Structure . 1

mainExampleUR . 2

mtsURDerived . 2

Kalman . 3

mtsRobotiqFTSensor . 5

mtsVarienseFSensor . 6

i

File Structure

$ tree -I
.
+---- catkin_build

+---- src
|---- ur_control
| |---- CMakeLists.txt
| |---- mainExampleUR.cpp
| |---- mtsURDerived.cpp
| |---- mtsURDerived.h
| |---- Kalman.cpp
| +---- Kalman.h
+---- CISST

|---- sawRobotiqForceSensor
| |---- CMakeLists.txt
| +---- components
| |---- code
| | +---- mtsRobotiqFTSensor.cpp
| |---- include
| | +---- mtsRobotiqFTSensor.h
| |---- CMakeLists.txt
| +---- package.xml
+---- sawVarienseForceSensor

|---- CMakeLists.txt
+---- components

|---- code
| +---- mtsVarienseFSensor.cpp
|---- include
| +---- mtsVarienseFSensor.h
|---- CMakeLists.txt
+---- package.xml

Figure 1: A file tree showing the most relevant files created for this project

1

mainExampleUR
./ur-control/

Description
The main program that creates all CISST components and starts everything.

Public
Functions:

• int main(int argc, char **argv)
Parses command-line arguments then initializes and connects CISST components. Specif-
ically the UR5, Robotiq F/T sensor, and second probe contact force sensor. Once com-
ponents are created, it starts them all.

mtsURDerived
./ur-control/

Description
Inherits/Extends the superclass mtsUniversalRobotScriptRT, and has added functionality for
admittance control.

Public
Functions:

• mtsURDerived(const std::string &componentName)
Constructor to create the component given a string name.

• mtsURDerived(const mtsTaskContinuousConstructorArg &arg)
Constructor to create the component given a generic mtsTask argument

• void Init(void)
Called from the constructor. Creates all state table interfaces necessary for the program
and initializes variables.

• void Configure(const std::string &ipAddr = ‘‘’’, int pose = -1)
Configures the IP connection to the UR5 and Robotiq. If pose is -1, the usual hand-over-
hand control algorithm is run. Otherwise, the pose indicates which preconfigured pose
the robot should home to. There are 32 preconfigured poses stored in the program, which
were used during gravity compensation.

• void Run(void)
This function is called repeatedly as part of a typical CISST multitask component. The
function collects all necessary data from connected component state tables before calling
ExecuteCommands.

• void GetRobotData(void)
Fetches the latest robot pose data from the superclass.

• void GetRobotiqData(void)
Fetches the latest Robotiq force data from the Robotiq CISST component’s state table.

2

• void GetVarienseData(void)
Fetches the latest Variense force data from the Variense CISST component’s state table.

• void ExecuteCommands(void)
Performs all the necessary steps for gravity compensation, Kalman filtering, and admit-
tance control before setting a velocity goal for the UR5. At the end of this function,
ExecuteCommands() is called for the superclass.

Private
Variables:

• InterfaceForceTorque robotiq ft
A custom struct to hold persistent Robotiq force data, relevant constants such as DoF,
and handles to read from the Robotiq CISST component’s state tables.

• InterfaceForce variense f
A custom struct to hold persistent Variense force data, relevant constants such as DoF,
and handles to read from the Variense CISST component’s state tables.

• Kalman kalman lin
Kalman object meant to filter linear hand forces from the Robotiq. The covariance
matrices are set in the Init(void) function.

• Kalman kalman rot
Kalman object meant to filter rotational hand torques from the Robotiq. The covariance
matrices are set in the Init(void) function.

• Kalman kalman probe
Kalman object meant to filter linear probe forces from the Variense. The covariance
matrices are set in the Init(void) function.

Functions:

• void GravityCompensation(void)
Performs gravity compensation using the latest read Robotiq force sensor values. Could
be made more generic in the future by using passable force aruments and returning the
compensated values.

Kalman
./ur-control/

Description
Contains covariences and previous parameters as class variables, has functions necessary to perform
Kalman filtering given a measurement vector. Currently hardcoded for a 9 element measurement
vector, but should be made more generic using generic CisstVector types in the near future.

Public
Functions:

• Kalman(void)
Constructor that initializes all covariances and persistent state class variables to zero.

3

• void SetDt(double dt)
Sets the dt of the state matrix A to be the passed parameter dt.

• void SetRCov(vct9 r)
Sets the R covariance matrix representing sensor noise to be the passed matrix r.

• void SetQCov(vct9 q)
Sets the Q covariance matrix representing action uncertainty to be the passed matrix q.

• void Filter(vct3 x, int samples since gt
Performs Kalman filtering on 9 values: 3 from the passed x, 3 from the derivative
of past x values, and 3 from the second derivative of past x values. The variable
samples since gt signals the number of samples since the last ground truth force
reading, which can be used to tweak our covariance confidence.

Private
Variables:

• double dt
Delta time between filter runs.

• vctFixedSizeMatrix<double,9,9> A
State transition matrix.

• vctFixedSizeMatrix<double,9,9> Qcov
Action uncertainty covariance matrix, must be manually set.

• vctFixedSizeMatrix<double,9,9> Rcov
Sensor noise covariance matrix, must be manually set.

• vctFixedSizeMatrix<double,9,9> P
Prediction error covariance matrix, automatically computed.

• vctFixedSizeMatrix<double,9,9> H
The measurement selector matrix, automatically set to the identity.

• int iter
Current iteration number, used to ensure there are no “cold start” issues in differentiating
x (e.g. the derivative cannot be computed given one sample).

• vct9 x[3]
Stores three values of x, from times t, t-1, and t-2 respectively.

• vct9 x d[2]
Stores two values of the derivative of x, from times t and t-1 respectively.

• vct9 x dd
Stores the second derivative of x.

Functions:
• vctFixedSizeMatrix<double,9,9> MatrixInv(vctFixedSizeMatrix<double,9,9>
M)
Inverts a given 9x9 matrix. This is needed since Kalman filtering uses S−1 in its optimal
gain calculation step.

4

mtsRobotiqFTSensor
./CISST/sawRobotiqForceSensor

Description
Extends/Inherits the superclass mtsTaskContinuous, used to fetch TCP data from a Robotiq force
sensor.

Public
Functions:

• mtsRobotiqFTSensor(const std::string & componentName)
Constructor that creates the component given the passed component name.

• void Run(void)
An overriden function from the superclass that calls GetReadings() and handles the
case where the socket disconnects.

• void Cleanup(void)
Closes the Robotiq socket.

• void Configure(const std::string & ip)
An overriden function from the superclass that sets the IP for the Robotiq sensor.

Protected
Functions:

• void GetReadings(void)
Asynchronously listens to the TCP port for force sensor readings, then parses them into
the raw data buffer.

• void Rebias(void)
Rebiases the force sensor by sending the official rebias command, as well as calculating a
bias vector by averaging several force readings together.

Private
Variables:

• const static int ROBOTIQ PORT = 63351
The Robotiq TCP/IP port.

• const static int DOF = 6
DoF of the Robotiq.

• const static int MAX READINGS PER PACKET = 6
The maximum number of force readings in a single packet. The number of readings is
always between 4 and 6 based on UR5 clock skew and when it decides to send us a packet.

• osaSocket Socket
Socket that communicates with the Robotiq

• bool IsConnected
Boolean flag representing if the connection to the Robotiq was successful

• double SocketTimeout
Timeout value.

5

• std::string IP
IP address for the Robotiq.

• int FTDataSeqNum
Sequence number for the received force data so that a program asking for force data
knows if it is repeated/stale.

• mtsDoubleVec FTRawData[MAX READINGS PER PACKET]
Raw data that the force packet is parsed into.

• mtsDoubleVec FTData
Force data resulting from the raw data buffer.

• mtsDoubleVec Bias
Bias vector since the implicit rebias of the Robotiq only considers its instantaneous force
reading. This vector is needed in the case that it rebiases at the peak of noise.

mtsVarienseFSensor
./CISST/sawVarienseForceSensor

Description
Extends/Inherits the superclass mtsTaskContinuous, used to fetch Serial data from a Variense force
sensor.

Public
Functions:

• mtsVarienseFSensor(const std::string & componentName)
Constructor that creates the component given the passed component name.

• void Run(void)
An overriden function from the superclass that calls GetReadings() and handles the
case where the Serial connection disconnects.

• void Cleanup(void)
Closes the Serial connection.

• void Configure(const std::string & serialPortName)
An overriden function from the superclass that sets the serial port name for the Variense
sensor.

Protected
Functions:

• void GetReadings(void)
Asynchronously listens to the serial port for force sensor readings, then parses them into
the raw data buffer.

• void Rebias(void)
Rebiases the force sensor by calculating a bias vector through averaging several force
readings together.

Private
Variables:

6

• const static int DOF = 3
DoF of the Robotiq.

• osaSerialPort SerialPort
Serial port that communicates with the Variense

• bool IsConnected
Boolean flag representing if the connection to the Variense was successful

• int FDataSeqNum
Sequence number for the received force data so that a program asking for force data
knows if it is repeated/stale.

• mtsDoubleVec FData
Force data read from the sensor.

• mtsDoubleVec Bias
Bias vector.

7

	Table of Contents
	File Structure
	mainExampleUR
	mtsURDerived
	Kalman
	mtsRobotiqFTSensor
	mtsVarienseFSensor

