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Project Overview

* Robot-assisted ultrasound system
which provides steady ultrasound
Imaging:

e Estimate transformation between

two neighboring images via deep
learning

» Keep track of the target slice via
“visual servoing”




Previous Schedule




* Experiment setup
W I( * Data acquisition
or Neural network with 1 DoF (Standard CNN, two-

UpTO Date channel input)

Neural network with 2 DoF (Similar to SCNN,
two independent inputs, multi-task training)




Experiment Setup

Equipment

Range &
resolution

Pros

Cons

URS5, Ultrasonic
system

Elevational: [0,1] mm,
0.2mm

Lateral: [-5,5] mm,
0.2mm

Fast, massive
acquisition

Poor resolution
(0.2mm)

Error

Linear stage, dial
indicator + holder, UR5,
Ultrasonic System

Elevational: [0,1] mm,
0.02mm

High resolution
(measurement
0.001mm)

Slow

1D only w/ the current
linear stage




Data: US images

Robot pose (ground truth): [x,y, z, r1, r2, r3]
/ Dial indicator reading




Two CNN structures
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The 1stCNN structure
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* Cost function: log(cosh(h(x)-y))
 Compared with Mean Absolute Error: better performance for large distances
* Compared with Mean Square Error: less sensitive to outliers

e Optimizer: Adam



Input data — 1 DoF

 Elevational distance: 0 — 1 mm. (Correlation ~ 0.5 at 1mm)
* Training set: 10,336 pairs of neighboring images from one phantom

* Validation set: 1,149 different pairs of neighboring images from the
same phantom and same region

e Test set: 1) 1,050 pairs of images from the same phantom but
different regions; 2) 50 pairs from the other CIRS elasticity phantom



Loss

Error
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Results

Model loss
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Input data — 2 DoF

 Elevational distance:[0, 1] mm. (Correlation ~ 0.5 at 1mm)
e Lateral distance: [-5, 5] mm.

* Training set, validation set and test set are from different regions of
the same phantom



Results

+ Outpuyt 2 Dok:

* the model does not converge

* Train on images w/ 1 DoF, test on
images w/ 2 DoF
 Table 1

e Estimation ~ maximum distance of
the training

* Only when lateral translation is small
(<0.4mm), the elevational estimation
is close to ground truth

* Train on images w/ 2 DoF, test on
images w/1 DoF
* Table 2
* Better results than Table 1

Logcosh MAE (mm)

(after 50 epochs) | (after 50 epochs)
Train set 0.0059 0.0712
Test set 0.1529 0.5119
Table 1

Logcosh MAE (mm)

(after 50 epochs) | (after 50 epochs)
Train set 0.0083 0.0757
Test set 0.0119 0.1008

Table 2




The 2" CNN structure
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Multi-task learning

Cost function: MAE + Logcosh
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Results

* Train set:
 MAE of elevational translation:
0.0496 mm (range: 0 -1 mm)

* MAE of lateral translation: 0.1036
mm (range: -5-5 mm)

 Test set: (different regions)

e MAE of elevational translation: ~
0.15 mm

e MAE of lateral translation: ~
1.4mm (!11)

A Overfit!

Lack of common features among
random speckles




e Currentissues and solutions
N eXt e New deliverables

Ste pS * New schedule

* New list of dependencies




Current Issues & solutions

Conventional Image

Region tracking for in-
plane motion

CNN for elevational
translation

Estimate transformation:

T in_plane *
T out_of plane

Conventional method in CV:

* Image region tracking technique
(Hager and Belhumeur, 1998) [2]

* U= (Uy, Uy, )"
pixel translation and rotation
Minimize:
0 = |[I(u,t) —1(0,t0)||*
Sp=—MT(I(u t + 1) — 1(0,¢0))
u(t +1) = u(t) +ou

Iterate until convergence (||du]| < €)



New deliverables

Minimum: (robotic) experiment
testbed and initial data acquisition on

muttiple phantoms

Expected: development and
evaluation of the NN to aceurately

medekin-plane and out-of-plane

motions based on correlations between
neighbouring images

Maximum: augmenting the NN into
the control loop of the robot for motion
compensation and evaluating the
system on different types of organs

On calibration phantom R Apr 28
On animal tissues/ other phantoms
after proof of feasibility

1) Report of the feasibility of NN todo | Apr 28
this task; /

2) Development of a pipeline combining
conventional methods (in-plane, 3DoF)

and the neural network (out-of-plane
translation, 1DoF)

Transformation estimation with 6 DoF; | May 9
Motion compensation for 2 DoF

Carry out at
S—

the same time



New schedules (starting from Mar 25)

[
e st (a7 | Apr1a A2t Apr2s  Mays  Imayiz

Testbed setup w/ linear stage and dial I
indicator |
Conventional Methods -

Feasibility of CNN only
Pipeline to combine CNN and
conventional methods (4 DoF)

Visual servoing 2DoF --
Final report I




Dependencies

Dependency

Solution

Alternatives

Status

Due

If not met?

Access to a 3D
printer

Not yet

Mar29
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