Paper Seminar Presentation
Project 8: UI for Radiation Therapy Cohort Selection
Keefer Chern

Paper: Using Big Data Analytics to Advance Precision Radiation Oncology

Our Project Goal

Develop a UI to select for cohorts in a radiation therapy database:

- Use MySQL at the backend to process the medical data
- Use Java to communicate with the backend to extract the data
- JSF (JavaServer Faces) to develop the UI framework
- Allow users to scroll and select desired variables and output patient IDs as cohorts.
Paper Selection:

- The focus of our project is to extract information from a database based on the parameters given by the user.
- I chose “Using Big Data Analytics to Advance Precision Radiation Oncology” to study the relevance for creating such a UI.
- The goal of our project is a small part of the larger concept of the learning health system this paper develops.
Background:

- The goal of precision medicine is to improve overall patient care and determine when and how to personalize patients’ treatments.
 - Increase quality of care and decrease side effects and cost
- The current method for precision medicine:
 - Heavily dependent on the knowledge the physician possesses for the treatment
 - Intrinsic issues.
 - Guidelines have been established
Learning Health System (LHS)

- Definition: Concept where quantifiable diagnostics, treatment, and outcome data are captured from a continuous stream of patients and placed in a knowledge base.
 - Can be analyzed with statistical and machine learning tools.

- Comprehensiveness:
 - Support clinical decisions
 - Discovery of important factors
 - Deriving hypotheses
Big Clinical Data

- The LHS needs big clinical data
 - Large database containing clinical information of patients
 - Lifestyle covariates, disease status, symptom management, quality of life outcomes, adverse side effects, survival

- Advantages of big clinical data
 - Can be reused
 - Provide multidimensional understanding
 - Improved by linking with other database
Usage of LHS

- LHS can provide the useful tool of predictive modeling
- In terms of a data model
 - Describe and validate relationships in data
- Before using a Predictive model
 - Have a reason
 - Choose either Decision Support
 - Or Knowledge Discovery
Decision Support

- **Goal:** to provide the best intervention for the patient
 - Input: facts and clinical options
 - Output: Possible outcomes

- **Key** to choose the best model
 - Clear picture of the decision
 - What are possible interventions

- **Example 1:** deciding whether to use a feeding tube to prevent weight loss for patients
- **Example 2:** modify toxicity levels to prevent taste disturbance

- **Note:** Predictive models cannot differentiate between causation from association
Decision Support Framework

Knowledge Discovery

- Goal: to expand knowledge by understanding what features best predict outcomes and discover underlying causes
- This all helps with deriving hypotheses
 - Cause- and effect relationships between feature and outcomes
 - Assists decision support
- Still need to be validated through formal controlled trials with real subjects
Knowledge Discovery Framework

Data! Biggest limitation of a LHS

- Suffer from selective sampling, missingness, and measurement error
 - We suffer from bad data inputting
- **Example 1: Recurrence of Cancer**
 - No data on location of recurrence
- **Example 2: Method of gathering xerostomia data**
 - Scored by a physician
 - Patient questionnaires
 - Controlled stimulation studies
Missing Data

● Example 1: institutions having different systematic care procedures
 ○ Even worse: procedures not in the database
 ○ Implication of this cofounder varies

● Example 2: Normalization of Care
 ○ Unethical to deviate from guidelines just for data
 ○ Therefore effects of irradiation is hard to explore
Data we work with

<table>
<thead>
<tr>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$E$osophagitis: NCI</td>
</tr>
<tr>
<td>$$V$oice Changes</td>
</tr>
</tbody>
</table>

| 4-D/CT |
| Abs Lymphocyte Count |
| Absolute Lymph Count(JH) |
| Absolute Neut Count(JH) |
| Act Partial Thromboplastin Tim |
| Adenovirus NAT(JH) |
| Admission Reason |
| Admitted |
| Admitted - Y/N |
| AFB Microscopic Exam(JH) |
| AFB Mycobacterial Cult(JH) |
| Agitation - v4 |
| Akathisia - v4 |
| Alanine Amino Trans(JH) |
| Albumin(JH) |
| Alcohol Use (drinks per day) |
| Alcohol Use (years) |

| VitaminD(25-OH)Total SER(JH) |
| Voice Changes |
| Volume of Radiologic Extra |
| Vomiting - NCI |
| Vomiting - v4 |
| Vomiting CTC4 |
| Watery eye |
| WBC |
| Weight (kg) |
| Weight (lb) |
| Weight Change (kg) |
| Weight Gain - v4 |
| Weight Loss |
| Weight Loss (CTC v4.0) |
| Weight Loss Y/N |
| White Blood Cell Count(JH) |
| White blood cell decreased |
| Wkly Billing Audit |
| Wkly CBCT/EPI Taken & Reviewed |
| Wkly-TX/OTV Scheduled |
Feature Extraction

- Radiomics
 - Density, texture, and gradient
- Pathology
 - Cell type, grade level, and differentiation
- Genomics
 - Patterns
Learning Health System (LHS) uses big clinical data to produce relevant and usable outcomes.

Decision support
- Getting treatment outcome from patient characteristics

Knowledge discovery
- Understanding the underlying cause and effect relationships

Biggest problem
- Not having well documented and collected data
Evaluation

Pros:
- Very clear about the topic being discussed
- Provides examples for each topic
- Well organized and structured
- Talk about the positives and limitations of each topic

Cons:
- Do not go into detail how LHS should be implemented
- No description of the cost of implementing a LHS
- Do not provide solutions to the limitations.
- No description of how to resolve patient permission and confidentiality of clinical data
Reference

Questions?