Project 8: UI for Radiation Therapy Cohort Selection

Seminar Presentation

Members: Domonique Carbajal, Keefer Chern
Mentors: Todd McNutt, Pranav Lakshminarayanan
Project Objective

Develop a User Interface that will allow user the ability to:

- Select a patient cohort based upon any number of variables (SQL)
- Perform statistical analysis on the extracted data
- Display the data in an easily comprehensible way (C# and JavaScript)
- Load and save parameters in a database query call
The Big Data Effort in Radiation Oncology: Data Mining or Data Farming?

Addresses conceptualization of handling data specifically for radiation oncology and poses warnings for handling errors in the database

Complete Author List:

Charles S. Mayo PhD a,*, Marc L. Kessler PhD a, Avraham Eisbruch MD a, Grant Weyburne BS a, Mary Feng MD b, James A. Hayman MD a, Shruti Jolly MD a, Issam El Naqa PhD a, Jean M. Moran PhD a, Martha M. Matuszak PhD a, Carlos J. Anderson PhD a, Lynn P. Holevinski BS a, Daniel L. McShan PhD a, Sue M. Merkel MSA RT(R)(T) a, Sherry L. Machnak MBA RT(T) a, Theodore S. Lawrence MD PhD a, Randall K. Ten Haken PhD a
Purpose

Describe data related issues in ROIS, impart vision for solutions and key data elements that need to be addressed for fully utilizing available information.

Introduce metaphor of “data farming” and necessary distinctions from data mining.
Terminology Used and Defined

PQI - Practical Quality Improvement

ROIS - Radiation Oncology Information System

ETL - Extract, Transform, Load

Data Mining - (As defined by paper)
 - Data aggregation and analysis efforts, “mining” creates expectations data elements needed already exist in electronic system
 - Assumes data allows for accurate linkage to patients, identification of relationships among data elements, and extraction of reliable values

M-ROAR - University of Michigan instance of a Radiation Oncology Analytics Resource
Figure 1 The systems required for construction of a knowledge-guided radiation therapy system that supports machine learning, reporting, and participation in trials and other clinical efforts can be conceptualized in 4 tiers. The foundational clinical processes and aggregation tiers enable the benefits of the analytics tier. The integration tier promotes interoperability even when multiple technologies are used.
Data Farming: Highlighting 5 V’s of Big Data in relation to ROIS

- **Variability**
 - Various data types need to be combined from multiple sources (different locations or practitioners) by criteria like time range

- **Veracity**
 - Incorrect and missing values cannot be avoided as PQI efforts focus on tails of distribution

- **Volume**
 - Storage and processing requirements drive decisions, image storage

- **Velocity**
 - Speed of system analytics and visualizations impact integration into clinical workflow

- **Value**
 - Obtaining support depends on cost-benefit to PQI and research efforts
"Farming" Big Data in Health Care

Cultivating Data Sources
- Standardize Inputs and Process ("Planting in spaced rows")
- Reduce Input Variability to Increase Output Availability
- Increase Veracity of Key Elements with Curation

Harvesting Information
- Strategic technology and process choices (Prioritize increasing yield of actionable data)
- Enable high Volume with Processes Facilitating Routine, Automated ETL
- Target Technologies Supporting High Velocity Reporting and Analytics

Feeding Knowledge That Improves Patient Care
- Get the data → Use the data: Expand effort in cycles (Harvest of one year educates planting for next year)
- Demonstrate Actionable Value
- Driving Investment in Expanding Effort to New Data Sources
- Watch for Growth of Cloud-based Multi-Institutional Studies

Figure 2 Farming is a useful metaphor for envisioning the issues in creating outcomes databases in health care.

Mayo, Charles S., et al. “The Big Data Effort in Radiation Oncology: Data Mining or Data Farming?”
Availability of Key Data Elements

- Free text entry in EHR make for extremely variable data complicating staging and outcomes
- Recurrence and toxicity information are often entered into the EHR as free text notes because it is the fastest means of proceeding with the demands of a busy clinical day
- NLP methods aren’t fully developed/can work even better in addition to altered practices
- Recommends: Practice changes to use standardized, quantified entry of key data elements; enables gathering the data now; and will enhance the accuracy and reduce costs of NLP methods when they evolve in the future.
Mayo, Charles S., et al. “The Big Data Effort in Radiation Oncology: Data Mining or Data Farming?”

<table>
<thead>
<tr>
<th>Key element category</th>
<th>Demand ranking</th>
<th>ETL difficulty</th>
<th>Typical source systems</th>
<th>Access</th>
<th>Multiple source systems</th>
<th>Use or used free text entry</th>
<th>Missing data</th>
<th>Data accuracy</th>
<th>Lack of standardization</th>
<th>PHI constraints limit access</th>
<th>Legacy formats or systems</th>
<th>Require process changes</th>
<th>Extensive transformation</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics ●</td>
<td>1</td>
<td>L</td>
<td>EHR</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Health status factors</td>
<td>2</td>
<td>L</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Pathology ○</td>
<td>3</td>
<td>M to H</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Surgery ○</td>
<td>2</td>
<td>M to H</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Chemotherapy ●</td>
<td>2</td>
<td>M</td>
<td>EHR, ODB</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Encounter details ●</td>
<td>3</td>
<td>L</td>
<td>EHR</td>
<td>×</td>
<td>R</td>
</tr>
<tr>
<td>Office, emergency, room, hospitalization</td>
<td>2</td>
<td>L</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Diagnosis ●, •, +</td>
<td>1</td>
<td>M</td>
<td>EHR, ROIS</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Staging ●, •, +</td>
<td>1</td>
<td>H</td>
<td>EHR, ROIS</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Prescription ●, +</td>
<td>1</td>
<td>H</td>
<td>ROIS</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>As-treated plan sum</td>
<td>1</td>
<td>M</td>
<td>ROIS</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>DVH ●, R</td>
<td>1</td>
<td>M</td>
<td>TPS</td>
<td>×</td>
<td>ATPS</td>
</tr>
<tr>
<td>Survival</td>
<td>1</td>
<td>M</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Recommendation ●</td>
<td>1</td>
<td>H</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Toxicity ●, +</td>
<td>1</td>
<td>H</td>
<td>EHR</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Patient-reported outcomes</td>
<td>2</td>
<td>H</td>
<td>EHR, P</td>
<td>×</td>
<td>E, X</td>
</tr>
<tr>
<td>Laboratory values ●</td>
<td>2</td>
<td>M</td>
<td>EHR</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Medications ●</td>
<td>2</td>
<td>M</td>
<td>EHR</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Height, weight, BMI●</td>
<td>2</td>
<td>M</td>
<td>EHR</td>
<td>×</td>
<td>E</td>
</tr>
<tr>
<td>Treatment imaging: details●</td>
<td>3</td>
<td>H</td>
<td>ROIS</td>
<td>×</td>
<td>R</td>
</tr>
</tbody>
</table>

E-susceptible to errors
X- manual effort required to extract
Building Data Curation in Practice Process

• The concept that inaccurate data values are acceptable because large volumes of data undermines the ability to carry out cohort discovery for rare combinations of factors.

• Errors or omissions for high-grade toxicities make it difficult to implement automated solutions to characterize distributions and correlate to contributing factors.

• “Assuring compliance with nomenclature standards for target and organ-at-risk structures and the existence of “as treated” plan sums dramatically increases the reliability of automated processing of DVH data” (267)
Approaching Technologies for radiation oncology: big data

In considering the value of a new technology, it is important to look at:

• performance of query operations
• ability to integrate into existing systems to carry out ETL operations
• ability to integrate into development of clinical applications to use the data in practice
• ability to interact with standard analytics or machine learning systems
• implications for availability of staff required to implement the technology
• cost (hardware, software, training, staff, time)

Important for our project as we must also consider our implementations impact on the above criteria

Mayo, Charles S., et al. “The Big Data Effort in Radiation Oncology: Data Mining or Data Farming?”
In Review

Positive Points
- Used relevant information to radiation oncology without over specifying
- Took a multi-level look at the implementation of a system (funding to error handling)
- Gave specific examples of undermined cohort selection due to data error

Negative Points
- Many recommendations oversimplified ease of establishing change to existing data collection in clinical setting
- Adherence to the “farming” metaphor became overextended
- Could have used more examples from their specific system (M-ROAR) implementation

Future steps for work:
More comprehensive look at attempt to alter data collection methods and influence on speed of queries and clinician response to changes
Mayo, Charles S., et al. “The Big Data Effort in Radiation Oncology: Data Mining or Data Farming?”