Augmentation of Haptic Guidance into Virtual-Reality Surgical Simulators

Group 14

Eric Cao

Vipul Bhat

Brett Wolfinger

Mentors

Dr. Jeremy Brown

Dr. Mahya Shahbazi

Guido Caccianiga

Summary

- Problem: Robotic Minimally Invasive Surgery (RMIS) trainees currently lack a means for real time feedback while performing practice tasks and can ingrain bad habits as a result
- Goal: Develop and evaluate the effectiveness of real-time haptic feedback and corrective guidance in surgical task simulators of complex trajectories (ie. suturing task)
 - Two Methods of Haptics:
 - Guidance: Persistent force encouraging user along an optimal 3D path
 - Forbidden Region: Forces applied only upon navigating into region
- Status: Delayed but catching up!
 - Issues with provided force interface to DVRK set us back a week
 - Minimal deliverable to be complete in the next week
 - Dependency update: IRB approved go ahead to run study!
 - Dependency update: Brain stimulation tool may not be ready for our use will impact maximum deliverable

Haptics and Medical Robotics Laboratory

Updates

Update: Dependencies

Dependency	Estimated Resolve Date	Needed Resolve Date	Resolution Plan	Status	Fallback Plan
Access to Existing GitLab	2/20	2/22	Contact Guido.	Received GitLab and setup our own branch	Can begin planning code without access, but will need access before we can test or check integration
Availability of dVRK	3/1	3/1	Create LCSR dVRK schedule	Project is on both dVRKs, reserved one during our meeting times	Move project onto a different dVRK or surgical robot.
Availability of accessories (Brain stimulation tool)	3/1	4/5 4/19 WORK IN PROGRESS	Coordinate with HAMR lab for access to brain stimulation measurement tool	Guido does not think the brain stimulation tool will be ready for our use	Use the brain stimulation tool when other lab members do not need it Develop protocol and necessary code for running brain stimulation
IRB update	3/1	4/12	Dr. Brown has previously approved IRB. Add us and dVRK to it	IRB approved and encompasses everything we need for our study	If there is an issue with updating the IRB, we will have to write and submit a new one
Subjects Scheduling	4/12 4/19	4/12 4/19 WORK IN PROGRESS	Schedule mutually available times with subjects.	Pushed back a week due to delays, will start this week as pilot testing wraps up	If unavailable, we can find more subjects (perhaps in a different population if acceptable to goal of study)

Update: Deliverables

Minimum: (4/12 4/19)	 Documentation of environment including operation, maintenance, and future C++ code for measuring, computing, and applying force fields guidance forces to dVRK manipulators while in simulation stored in GitLab Same as above for forbidden regions
Expected: (4/19 5/4)	 Data, study protocol and scripts for study extendability stored in GitLab Report on user study evaluating the approach(es) taken to implement force field effect of haptic feedback and our chosen approach(es) (Goal n = 15)
Maximum: (5/10)	 C++ code for integrating brain stimulation into data collection Data collection protocol and scripts for study extendability stored in GitLab Report on user study evaluating the effectiveness of the haptic guidance in the absence and presence of brain stimulation (Goal n = 15)

Update: Timeline Details - Development

Minimum Tasks: Implementing repulsive and guidance force fields for the needle-driving task on the dVRK system	Expected Date
Complete ROS Tutorials from Clearpath Robotics	2/22
Generate a movement on the existing dVRK setup	3/1
Control movement to follow simple translation and rotation commands with controllable forces and torques	3/8
Refine movement to follow given 3D curve with human interference	3/15
Create repulsive force fields when deviated from given curve (Guidance Force)	3/29 4/5
Refine integration of curve following (Guidance force) into dVRK	4/5 4/12
Edit documentation. Finish Forbidden Regions	4/12 4/19

Update: Timeline Details - Evaluation

Expected Tasks: Evaluating the approaches in a user study	Expected Date	
Create procedures for conducting study	4/5	
Create data collection code	4/5	
Run study on n=15 participants	4/12 4/26	UP
Create write up and edit procedures document	4/19 5/4	

UP NEXT	

Maximum Tasks: Evaluating the effectiveness of haptic guidance in the absence and presence of brain stimulation in a user study	Expected Date
Add brain stimulation controls into experimental setup (work with Guido throughout this process)	4/26 5/10
Run study on n=15 participants	5/3 Future Work
Create write up and edit procedures document	5/10 Future Work

Update: Activity Timeline

Haptics and Medical Robotics Laboratory

Work to Date

Task Overview

- Want to implement Haptic Feedback
- Need to find Task Space Error
 - Difference between where End Effector (EE) is and where EE should be

Calculating Task Space Error

- 1. Read tip_{current}, EE_{current}
- 2. Calculate $T_{tip,EE} = EE_{current} * tip_{current}^{-1}$
- 3. Find tip_{goal} (details later)
- 4. Calculate $EE_{goal} = T_{tip,EE} * tip_{goal}$
- 5. Calculate T_{EE_current, EE_goal} = EE_{goal} * EE_{current} -1
- 6. $T_{\text{EE_current, EE_goal}}$ is task space error

Haptic Feedback Methods: Guidance

- Guidance: Persistent force encouraging user along an optimal 3D path
- Tip_{goal}: Closeby candidate point taking into account current and desired

velocity

Spring, Damper

Haptic Feedback Methods: Forbidden Region

- Forbidden Region: Forces applied only upon navigating into region
- Tip_{goal}: Closest point in region
- Spring, Damper, Allowable region

Roadblocks We've Overcome

- dVRK Availability
 - Solution: switch systems
- Small Bug in dVRK Cartesian Impedance Optimizer
 - Plane optimizer not taking into account simulation frame transformation
 - Solution: Apply a correcting transformation in the background
- Small Bug in No_Joint_Limit Client
 - Solution: Anton fixed it and pushed an update

Looking Forward

User Study

- Question we are seeking to answer:
 - Does Haptic Feedback improve performance and/or learning on surgical tasks involving complex trajectories (ie. suturing)
- Experimental Setup
 - Subjects: Novices on the DaVinci (n = 15, 5 in each group)
 - Control group: No haptics
 - Two Experimental Groups: Guidance and Forbidden Regions
- IRB has been approved

User Study Metrics

Metrics collected

 Time to completion, level of forces applied, path taken by needle, translational and rotational error, subject survey data

[1] M. M. Coad et al., "Training in divergent and convergent force fields during 6-dof teleoperation with a robot-assisted surgical system," IEEE World Haptics Conf., 2017, pp. 195–200.

Citations

[1] M. M. Coad et al., "Training in divergent and convergent force fields during 6-dof teleoperation with a robot-assisted surgical system," IEEE World Haptics Conf., 2017, pp. 195–200.

Reading List

- Bowyer, S. A., Davies, B. L. & Baena, F. R. Y. Active Constraints/Virtual Fixtures: A Survey. IEEE Transactions on Robotics 30, 138–157 (2014).
- Coad, M. M. et al. Training in divergent and convergent force fields during 6-DOF teleoperation with a robot-assisted surgical system. 2017 IEEE World Haptics Conference (WHC) (2017). doi:10.1109/whc.2017.7989900
- Enayati, Nima, et al. "Robotic Assistance-as-Needed for Enhanced Visuomotor Learning in Surgical Robotics Training:
 An Experimental Study." 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018,
 doi:10.1109/icra.2018.8463168.
- N. Enayati, E. C. Alves Costa, G. Ferrigno, and E. De Momi, "A Dynamic Non-Energy-Storing Guidance Constraint with
 Motion Redirection for Robot-Assisted Surgery" in IEEE/RSJ International Conference on Intelligent Robots and Systems,
 IROS, 2016
- Jantscher, W. H. et al. Toward improved surgical training: Delivering smoothness feedback using haptic cues. 2018
 IEEE Haptics Symposium (HAPTICS) (2018). doi:10.1109/haptics.2018.8357183
- Kuiper, Roel J., et al. "Evaluation of Haptic and Visual Cues for Repulsive or Attractive Guidance in Nonholonomic Steering Tasks." IEEE Transactions on Human-Machine Systems, vol. 46, no. 5, Oct. 2016, pp. 672–683., doi:10.1109/thms.2016.2561625.
- Pavlidis, I. et al. Absence of Stressful Conditions Accelerates Dexterous Skill Acquisition in Surgery. Scientific Reports 9, (2019).
- Ström, P. et al. Early exposure to haptic feedback enhances performance in surgical simulator training: a prospective randomized crossover study in surgical residents. Surgical Endoscopy 20, 1383–1388 (2006).