

Automated Segmentation of Temporal Bone CT Imaging for Robot-Assisted Microsurgery

Group 4: Andy Ding, Jessica Soong Mentors: Dr. Francis X. Creighton, Dr. Russell H. Taylor, Dr. Mathias Unberath, Max Zhaoshuo Li

Project Overview

Problem

- Temporal bone anatomy is geometrically complex with critical structures often within millimeters of each other.
- Surgery in this area poses a high risk of damage to anatomy.

Goal

Develop an automated system for segmenting the temporal bone to help prevent intraoperative damage to critical anatomy.

Credit: Christine Gallup https://otosurgeryatlas.stanford.edu/

Toward an automatic preoperative pipeline for image-guided temporal bone surgery

Johannes Fauser [[]], Igor Stenin, Markus Bauer, Wei-Hung Hsu, Julia Kristin, Thomas Klenzner, Jörg Schipper & <u>Anirban Mukhopadhyay</u>

International Journal of Computer Assisted Radiology and Surgery 14, 967–976(2019) Cite this article

- First major deep learning-based approach to automated temporal bone segmentation [1]
- Discusses strategies to handle scarcity of available labeled data
- Baseline network architecture is similar to our proposed method with nnUNet
- Demonstrates potential issues with purely using a UNet model

Paper: Summary & Key Takeaways

Summary

- Automatic temporal bone segmentation with UNet and probabilistic active shape modeling (PASM) for pre-operating path planning (e.g., cochlear access, superior semicircular canal approach, retrolabyrinthine approach)
- Key Results
 - Segmentation accuracy evaluation of UNet + PASM hybrid against UNet or PASM alone
 - Pre-operative planning success with UNet + PASM hybrid vs. UNet or PASM alone

Fauser et al, 2019 (Figure 1)

Paper: Background

- Minimally invasive surgery (MIS) in the temporal bone procedures is increasing in popularity
 - Cochlear implants
 - Middle ear access
 - Multi-port setups analogous to laparoscopic procedures in the abdomen
- MIS requires pre-operative planning, ideally with segmented CTs

Fauser et al, 2019 (Figure 1)

Paper: Manual Segmentation

24 manually segmented CTs (resolution 0.2x0.2x0.4mm³)

Fauser et al, 2019 (Figure 1)

Paper: Automated Segmentation Workflow

- Ensemble 2D Unet
- Shape Regularization
- Trajectory planning

Fauser et al, 2019 (Figure 3)

Paper: UNet Segmentation

- Implemented slice-by-slice predictions with 2D UNets (coronal, axial, saggital) instead of 3D UNet
 - Due to scarcity of available labeled data
- Majority voting from the 3 independent predictions for each voxel to finalize labels
- Extreme heterogeneity of volumes among labeled anatomy

Paper: The Chorda Tympani Problem

- Problem: Chorda is incredibly thin
 - 2-5 voxels in diameter
 - "Disappears" when entering the middle ear

Fauser et al, 2019 (Figure 2)

Paper: The Chorda Tympani Solution

- Solution: Two UNet predictions!
 - One for chorda tympani
 - One for all other segments

Paper: The UNet Shape Problem

- Problem: UNet has no prior knowledge of geometry
 - Predicted labels resulted in fragments, holes, and islands

Internal Carotid Artery

Middle Ear Ossicles

Facial Nerve

Adapted from Fauser et al, 2019 (Figure 5)

Paper: Active Shape Models

Paper: The UNet Shape Solution

- Solution: Use probabilistic active shape models (PASM) [2] to form anatomically realistic segmentations
 - UNet predictions serve as an initialization to PASM
 - Mean shapes from statistical shape model are rigidly aligned
 - PASM deforms mean shapes to approximate target anatomy

Fauser et al, 2019 (Figure 5)

Paper: UNet + PASM Hybrid Dataset Breakdown

Paper: Minimally Invasive Operating Path Planning

- Linear trajectories were calculated using segmentations for cochlear access (cochlear implantation)
- Non-linear trajectories were calculated for internal auditory canal access (vestibular schwannoma removal)

Fauser et al, 2019 (Figure 6)

Paper: UNet + PASM Hybrid vs. PASM – Cochlear Access

Paper: UNet + PASM Hybrid vs. PASM – Semicircular Canal Approach

Paper: UNet + PASM Hybrid vs. PASM – Retrolabyrinthine Approach

Fauser et al, 2019 (Figure 9)

Paper: UNet + PASM Hybrid vs. PASM – Path Planning Success Rate

Paths generated with UNet + PASM hybrid segmentations were more similar to ground truth paths than those generated with PASM alone

	Success rate			Mean safety distance			Violation rate ($d < d_{\min}$)		
	Со	SSC	RL	Co (0.8)	SSC (1.5)	RL (1.5)	Со	SSC	RL
Ground truth	0.9	1.0	1.0	1.39	2.19	2.35	-	_	-
Semiautomatic	0.65	0.66	0.66	1.15	2.17	2.60	0.0	0.0	0.0
Ours	0.9	1.0	1.0	1.04	2.16	2.42	0.18	0.0	0.1

Fauser et al, 2019 (Table 2)

Paper: UNet + PASM Hybrid vs. PASM/UNet – Dice Score + Sensitivity

- Dice scores are similar among the three methods
- Hybrid model seems to have lower sensitivity compared to PASM (refer to table)

Paper: Conclusions

- Semantic segmentation with UNet alone was not sufficient to create robust segmentations in this dataset
- Shape regularization with PASM results in anatomically accurate segmentations in the temporal bone
- UNet + PASM hybrid model performs similar to UNet or PASM alone with respect to Dice similarity scores
- Path planning using segments from the UNet + PASM hybrid model results in more realistic and reliable trajectories than PASM alone

Paper: Critiques - Pros

- Clearly stated methods for implementing UNet and PASM together
- Elegant solution for creating intact segments of temporal bone anatomy
- Code is publicly available for testing

Paper: Critiques - Cons

- No true test set or external validation; how generalizable is this model?
- Sensitivity of some segments is quite low
 - Is the hybrid model systematically undersegmenting?

Paper: Critiques - Cons

- Path planning figures show ground truth and predicted segments together
 - Path planning should be tested using all predicted segments from one method

Paper: Potential Next Steps

- Integration into a GUI application for surgeon usage
- External validation to evaluate generalizability
- Hausdorff distances to further investigate segmentation accuracy

Paper: Relevance

- Contingency plan for malformed segmentations
 - Shape regularization using a statistical atlas
 - Statistical shape model of our dataset has already been created in prior work
- The Chorda Tympani Problem
 - Major reason to explore deep learning approaches for segmentation
 - Segmentation propagation did not perform well at segmenting chorda

References

- Fauser, J., et al. (2019). "Toward an automatic preoperative pipeline for image-guided temporal bone surgery." <u>International Journal of Computer Assisted Radiology and</u> <u>Surgery</u> 14(6): 967-976.
- 2. Meike, B., et al. (2014). <u>Segmentation of risk structures for otologic surgery using the</u> <u>Probabilistic Active Shape Model (PASM)</u>. Proc.SPIE.

Image References

Temporal Bone Anatomy. https://otosurgeryatlas.stanford.edu/wpcontent/uploads/2020/06/7a-1.jpg. Accessed March 8, 2021 Thank you! Questions?