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Project Summary 
 
Surgery within the temporal bone involves maneuvering around small and geometrically 
complex anatomy (Figure 1), which poses a high risk of accidental injury. This has motivated 
several groups to build cooperative control robotic systems for temporal bone surgery in an effort 
to reduce hand tremor, increase economy of motion, and ultimately augment surgeon skill in this 
space. This project aims to provide an automated system for creating high-quality segmentations 
of patient temporal bone CTs, which can be used to inform semiautonomous surgical systems 
about critical patient anatomy that should be avoided. 
 

 
Figure 1. Relevant anatomy in and around the temporal bone1 

Paper 
 
“Toward an automatic preoperative pipeline for image-guided temporal bone surgery” was 
chosen for its relevance to the project.2 Although the motivation behind this paper is for pre-
operative path planning in otologic procedures, the overall methods described are highly relevant 
and similar to this project’s proposed strategies. This paper also provides strategies to improve 
segmentations that have not been previously reported for this project. Furthermore, this paper 
does a decent job of demonstrating potential pitfalls of using only UNet segmentation in such a 
complex and small anatomical area in CT 
 
Summary and Key Results 
The summary of this paper is the development of an automatic temporal bone segmentation 
pipeline with UNet and probabilistic active shape modeling (PASM) for pre-operating path 
planning (e.g., cochlear access, superior semicircular canal approach, retrolabyrinthine access). 
Key results with this paper, which will be discussed in detail below, include segmentation 



accuracy evaluation of the author’s UNet + PASM hybrid model against UNet or PASM alone, 
as well as pre-operative planning success with UNet + PASM hybrid compared to. UNet or 
PASM alone. 
 
Background 
Minimally invasive surgery (MIS) in the temporal bone procedures is increasing in popularity. 
Surgical procedures including cochlear implantation, vestibular schwannoma excision, and 
cholesteatoma removal all have evolved to include minimally invasive options for certain cases.3  
MIS, however, requires pre-operative planning, ideally with segmented CTs, to determine 
operating trajectories that minimize risk of damage to surrounding structures. To this end, the 
authors of this paper aim to create an automated system for segmenting temporal bone CTs for 
pre-operative planning. 
 
Segmentation Workflow 
24 CT scans of the temporal bone (resolution 0.2x0.2x0.4 mm3) were manually segmented. The 
authors then implemented an ensemble 2D-UNet model to semantically segment CT scans slice-
by-slice. Majority voting of the predicted segmentations then finalized the output of the UNet 
model. These predictions were used as initializations for a probabilistic active shape model 
(PASM) to provide anatomically accurate segmentations (Figure 2). 
 

 
Figure 2. Segmentation workflow as described in the paper. Not shown is the separate UNet 
model for chorda tympani labeling. 

 
Importantly, the authors noted that the chorda tympani was disproportionately smaller in volume 
than other structures—even the ossicles. Because of this, the authors specifically trained a 
separate ensemble 2D-UNet model to segment the chorda tympani and combined the results of 
this model with those of the aforementioned multi-class ensemble 2D-UNet. 



 
Shape Regularization with Probabilistic Active Shape Models 
Since UNet has not inherent knowledge of anatomical structure, the authors found that meshes 
formed from predicted labels exhibit small artifacts or small missing pieces. In particular, the 
internal carotid artery was broken in several pieces, the semicircular canals had holes in their 
arcs, the stapes was decayed, and the facial nerve had missing portions of its mastoid segment. 
Unlike UNet, active shape models (ASM) inherently respect the shape by restricting the 
segmentation to a trained shape atlas (Figure 3). As a variant of ASM, probabilistic active shape 
models (PASM) allow a more flexible adaptation by leaving the shape space if image features 
provide enough evidence.4 
 

 
Figure 3. Workflow for building a statistical shape model and implementing active shape 
models. 

By using the predictions from UNet as initializations for PASM, the authors were able to 
generate segmentations that looked more realistic overall (Figure 4). 
 



 
Figure 4. Representative fragmented structures from UNet and their regularized counterparts. 
Top left: Internal carotid artery; Top right: Facial nerve; Bottom left: Semicircular canals; 
Bottom right: Middle ear ossicles. 

Path Trajectory Planning 
The authors then used in-house path trajectory planning software to plan paths for cochlear 
access for cochlear implantation, superior semicircular canal approach for internal auditory canal 
access, and retrolabyrinthine approach for internal auditory canal access (Figure 5). Trajectories 
calculated using shape-regularized predictions were closer to ground truth paths than those 
calculated using PASM predictions alone. This ultimately resulted in a trajectory planning 
success rate identical to ground truth when using shape-regularized predictions. When using 
PASM for trajectory planning, however, the authors reported a success rate of only 66% (Table 
1). 
 

 
Figure 5. Left: Linear paths (colored lines) from start states at the surface of the bone(orange 
arrows) to the cochlea. Right: Nonlinear trajectories to the internal auditory canal that 
approximate two given start and target points. 



Table 1. Trajectory comparisons between ground truth, PASM (labeled as “Semiautomatic”), 
and shape-regularized predictions (labeled as “Ours”). 

 
 
Segmentation Accuracy Assessment 
When comparing shape-regularized UNet to UNet or PASM alone, the authors reported similar 
Dice similarity scores for each predicted label (Figure 6). Of note, jugular vein and chorda 
tympani predictions had particularly low Dice scores. The authors also reported the sensitivity 
(percent overlap with respect to ground truth) of their tested models for each label. While PASM 
was noted to have higher sensitivity than UNet or shape-regularized UNet, the authors contribute 
this to general oversegmentation with this technique. 
 

 
Figure 6. Dice scores for each model. Bottom table displays mean sensitivity (percent overlap 
with respect to ground truth). 

 
Conclusions 
The results of this paper suggest that semantic segmentation with UNet alone was not sufficient 
to create robust segmentations in this dataset. Adding shape regularization with PASM, however, 
results in anatomically accurate segmentations in the temporal bone. Furthermore, the UNet + 
PASM hybrid model performs similar to UNet or PASM alone with respect to Dice similarity 
scores. Despite the similarity in Dice scores, path planning using segments from the UNet + 
PASM hybrid model results in more realistic and reliable trajectories than PASM alone, making 
it more practical for clinical use. 
 
Paper Critiques 
 
Pros 



In general, this paper provides encouraging results for automatic temporal bone CT segmentation 
using deep learning methods. The paper clearly stated methods for implementing UNet and 
PASM together and provided an elegant solution for creating intact segments of temporal bone 
anatomy. Furthermore, the authors have made their code publicly available for testing and 
evaluation. 
 
Cons 
First, the authors do not have a true test set or dataset for external validation. Because of this, the 
authors have not evaluated the generalizability of their model. Furthermore, the sensitivity of 
some of the segments, particularly of the jugular vein and chorda tympani, are quite low. This 
suggests that either the hybrid model is labelling these anatomical structures inaccurately or is 
undersegmenting these structures. For our purposes, this provides suboptimal segments to 
implement virtual fixtures in a meaningful way. Finally, perhaps, the most concerning issue with 
this paper is that their figures for trajectory planning show a mixture of ground truth segments 
and predicted segments (Figure 7). This suggests that their trajectory planning experiments were 
not done using all predicted segments when testing the performance of a particular model. 
Trajectory planning experiments should ensure planning still succeeds when using all predicted 
segments, which would further demonstrate the accuracy of segmentations overall. 
 

 
Figure 7. Non-linear trajectories through the superior semicircular canal to access the internal 
auditory canal. Blue path was generated from shape-regularized segments. Green path is ground 
truth. 

 
Potential Next Steps 
As discussed in the paper, the authors plan to integrate this model into a GUI application for 
surgeon usage. Given the critiques listed above, a logical next step would be to validate the 
model on an external dataset to demonstrate generalizability. Furthermore, Hausdorff distance 
calculations would help to further investigate segmentation accuracy. 
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