

Automated Segmentation of Temporal Bone CT Imaging for Robot-Assisted Microsurgery

Group 4: Jessica Soong, Andy Ding Mentors: Dr. Francis X. Creighton, Dr. Russell H. Taylor, Dr. Mathias Unberath, Max Zhaoshuo Li

PROJECT GOAL

Automated segmentation system of the temporal bone to prevent intraoperative injury of critical structures during robot-assisted microsurgery

Clinical Motivation

- Temporal bone anatomy is geometrically complex
- Surgical access requires drilling through mastoid bone
- Critical structures are often within millimeters of each other [1]
- Accidental damage can lead to: [2-4]
 - Changes in taste
 - Facial paralysis
 - CSF leakage
 - Closure of the sigmoid sinus

[1] Cousins, 2007; [2] Lloyd et al, 2007; [3] Fayad et al, 2003; [4] Zanoletti et al, 2014;

Clinical Motivation

Possible solution: CT-registered robot-assisted surgery [5]

ABORATORY FOR

- Reduces hand tremor
- Reduces risk of intraoperative injury
- Needs information about patient anatomy

Delta

Goals & Significance

- Evaluate state-of-the-art deep learning models for semantic segmentation of the temporal bone
- Build the largest comprehensively annotated temporal bone CT database for future use in research and industry

If successful, this project will provide:

- Robust virtual safety barriers for robot-assisted temporal bone surgery
- Patient-specific segmentations to reinforce anatomical knowledge in junior otologists
- Most complete dataset for training future deep learning networks

Dependencies

Dependency	Need	Status	Follow-up	Contingency Plan	Original Deadline	New Deadline	Effect
Dr. Unberath Supervision Agreement	Need a Deep Learning Consultant for the project	Resolved	N/A	Max (technical consultant) has deep learning experience, continue project with him as lead.	2/12	N/A	May run into some issues if Max's expertise cannot help us through some issues, although the risk is low, since we are implementing methods that have been shown to work on similar datasets.
Workstation Arrival	Computational Power and Availability	Purchased, peripherals arrived, workstation estimated 4/15 arrival	Check in tracking progress weekly	Continue to use MARCC.	2/27	4/15	Since workstation arrival was delayed, we used MARCC/gcloud for debugging/compute. Due to limited compute, we have restructured our project goals (detail to be discussed).
Label/Annotation Finalization	Need Data to Train Final Models	Revising, 75% Done		Use unfinalized labels to debug/test with for new implementations.	2/15	4/4	Can use preliminary labels (mostly done) to train/debug with. Final models/results will be put off until the labels are finalized.

Key Deliverables

	Activity	Deliverable	
Minimum	Synthesize deformed temporal bone CTs with labels to augment training dataset	Statistical shape model of temporal bone CTs	\checkmark
Expected	Implementing nnU-Net	Fully functioning model for CT segmentation with documentation.	\checkmark
	Training model, then validating nnU- Net results on test data.	Internal validation report with ground truth segmentations.	X
	Application of nnU-Net to external dataset.	External validation reports with Western University's dataset. [8]	X
Maximum	Implementing GAN label refinement into nnU-Net	GAN label refinement model for CT segmentation with documentation.	
	Final manuscript preparation.	Submittable manuscript.	
	Application of segmentation model to unlabeled dataset.	High quality segmented temporal bone CT dataset using our segmentation models.	

Technical Approach: Data Generation

Idea: Use deformation fields to model the variability in shape among our CT scans

Statistical Shape Model Deformed Volumes

Technical Approach: nnU-Net

- nnU-Net (Isensee F et al)
 - New benchmarking pipeline developed to standardized medical imaging.
 - 33 top leaderboard results for 53 different datasets with this method.
 - 2D and 3D approach available.

Metrics For Dummies

Dice Score:

Think of as 2x area of overlap divided by the total volume of each set.

 $DSC = rac{2|X \cap Y|}{|X| + |Y|}$

http://kulla.me/en/

Hausdorff Distance:

Think of as greatest distance from one point in a set to the closest point in another set.

Credit: Roccini https://en.wikipedia.org/wiki/User:Rocchini

Preliminary nnU-Net Prediction Results

#	Class	Dice	Hausdorff
1	Bone	.945	.182
2	Malleus	.943	.067
3	Incus	.943	.056
4	Stapes	.698	.065
5	Vestibule + Cochlea	.969	.184
6	Vestibular Nerve	.853	.072
7	Superior Vestibular Nerve	.685	.232
8	Inferior Vestibular Nerve	.327	.238
9	Cochlear Nerve	.797	.123
10	Facial Nerve	.813	.137
11	Chorda Tympani	.670	.192
12	Internal Carotid Artery	.893	2.99
13	Sigmoid Sinus + Dura	.793	.175
14	Vestibular Aqueduct	.688	.392
15	Mandible	.967	.070
16	External Auditory Canal	.781	.044

Technical Approach: GAN Label Refinement

- Current nnU-Net model will serve as generator, with the GT label map and image as input.
- Prediction label map and GT label map will be put into a discriminator, loss will be calculated.
- > Then generator model will have an overall loss term that includes the loss from the discrimator.

[9] Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH

Timeline/Milestones

Milestones		Progress	Start	End
Finalize Ground Truth Labels		75% - Have two annotators, but different annotating convention. Need to correct labels and re-train models.	2/9	2/12 4/4
Setup Environment		100% - Complete	2/13	2/19
Simple Data Generation	SSM Data Generation Implementation	90% - Implementation itself complete, but need to re- run SSM to exclude current dataset, or else SSM will introduce bias into val/test data.	2/17	2/23 4/2
nnU-Net Implementation		90% - Pipeline to train set up, need to get final dataset, generated data, then can train final models.	2/24	3/25 4/18
AH-Net Implementation	CAN Label Definement	0%		
Patch-Based Network Implementation	Implementation		4/1	4/30
External Dataset Validation		10% - Emailed university for external dataset.	4/12 3/31	4/28 5/4
HQ Dataset Labeling		0%	4/15 5/1	4/28 5/4
Manuscript Preparation + Co	de	0%	3/26 4/3	5/4 5/11

Updated Gantt Chart

- nnUNet Hardware Troubleshooting:
 - Effect: Took much longer than anticipated, delayed initial results.
- Finalizing Ground Truth Labels: Two annotators had different conventions, but this was caught late into the project.
 - Effect: Need to re-train vanilla model, hold off on SSM-generated model training.
- Image Synthesis: Actual SSM implementation automated by 3/17, but training data included test data from deep learning method
 - Effect: Replace overlapping data with more data from Dr. Stewardson, delay SSM-generated model training

Roles and Responsibility

► The Team:

Jessica's Responsibilities		Shared Responsibilities	Andy's Responsibilities		
• • • •	Environment setup nnU-Net implementation nnU-Net writeup GAN-regularization External Dataset Validation	Manuscript preparation	 Data generation Manage dataset (segmentations), purchases SSM writeup HQ Dataset Labeling External Dataset Formatting 		

Mentors:

- **Dr. Russell Taylor**: Technical Lead
- **Dr. Francis X. Creighton**: Clinical Lead
- **Dr. Mathias Unberath**: Deep Learning Lead
- Maxwell Zhaoshuo Li: Technical Consultant

Management Plan

Meetings:

- Sunday meetings between Jessica & Andy
- Tuesday and Thursday brief check-ins between Jessica & Andy
- Weekly meetings with the LCSR (Wednesdays)
- Weekly meetings with Dr. Unberath (Fridays)
- Ad hoc meetings with Max Li (Mondays)
- Communications:
 - Slack channel with the LCSR (Technical Leads/Consultants)
- File Sharing:
 - Data/Reports: Hopkins OneDrive, CIS II website
 - Code: Private repository on Github

References

- 1. Cousins VC. Lateral skull base surgery: a complicated pursuit?. *The Journal of Laryngology & Otology*. 2008;122(3):221-229. doi:10.1017/s0022215107000436.
- 2. Lloyd S, Meerton L, Cuffa RD, Lavy J, Graham J. Taste change following cochlear implantation. *Cochlear Implants International*. 2007;8(4):203-210. doi:10.1179/cim.2007.8.4.203.
- 3. Fayad JN, Wanna GB, Micheletto JN, Parisier SC. Facial Nerve Paralysis Following Cochlear Implant Surgery. *The Laryngoscope*. 2003;113(8):1344-1346. doi:10.1097/00005537-200308000-00014.
- 4. Zanoletti E, Cazzador D, Faccioli C, Martini A, Mazzoni A. Closure of the sigmoid sinus in lateral skull base surgery. *Acta Otorhinolaryngol Ital*. 2014;34(3):184-188.
- 5. Razavi CR, Wilkening PR, Yin R, et al.. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. *Otolaryngology–Head and Neck Surgery*. 2019;161(5):852-855. doi:10.1177/0194599819861526.
- 6. Sinha A, Leonard S, Reiter A, Ishii M, Taylor RH, Hager GD. Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations. In: ; 2016.. doi:10.1117/12.2217337.
- 7. Neves CA, Tran ED, Kessler IM, Blevins NH. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. *Scientific Reports*. 2021;11(1). doi:10.1038/s41598-020-80619-0.
- 8. Nikan S, Van Osch K, Bartling M, et al.. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans. *IEEE Transactions on Image Processing*. 2021;30:739-753. doi:10.1109/tip.2020.3038363.
- 9. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature Methods*. 2021;18(2):203-211. doi:10.1038/s41592-020-01008-z.

Image References

- Arcade Text Logo. https://mathiasunberath.github.io/img/Logo_text.png. Accessed February 11, 2021.
- *CllS Logo*.; 2019. https://ciis.lcsr.jhu.edu/doku.php. Accessed February 11, 2021.
- *Johns Hopkins Hospital Logo*.; 2017. https://www.brainsway.com/wp-content/uploads/2017/12/1-3.jpg. Accessed February 11, 2021.
- Temporal Bone Anatomy. https://otosurgeryatlas.stanford.edu/wp-content/uploads/2020/06/7a-1.jpg. Accessed February 11, 2021
- Mastoidectomy Boundaries. https://otosurgeryatlas.stanford.edu/wp-content/uploads/2020/06/7a-5.jpg. Accessed February 11, 2021
- Kulla, Stephan. Intersection of Sets A and B. 22 Apr. 15AD, en.wikipedia.org/wiki/File:Intersection_of_sets_A_and_B.svg. Accessed 1 Apr. 2021.
- Kulla, Stephan. Union of Sets A and B. 25 Apr. 2015, en.wikipedia.org/wiki/File:Union_of_sets_A_and_B.svg. Accessed 1 Apr. 2021.
- Rocchini. *Haussdorf Distance Sample*. 15 Oct. 2007, commons.wikimedia.org/wiki/File:Hausdorff_distance_sample.svg. Accessed 1 Apr. 2021.