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Clinical Motivation 
Operating in the temporal bone and lateral skull base is technically challenging. This region contains a 
complex geometry of nerves, arteries, veins, the end-organs for both hearing and balance, as well as the 
cranial nerves responsible for speech and swallowing.1 To access this region, surgeons drill through 
varying densities of bone to identify surgical landmarks. In addition to the limited visibility of the surgical 
field and complex anatomical geometry in this space, critical anatomical structures are often within 
millimeters of each other.  

Due to these conditions, temporal bone surgery poses a high risk of accidental damage to surrounding 
structures during free-hand procedures. For example, after cochlear implantation, cochlear 
implantation, 45% of patients experience changes in taste, with 20% of those patients having unresolved 
symptoms by the end of their follow-up period.2 In more rare cases, patients also are at risk for facial 
paralysis due to accidental damage to the facial nerve.3 Accidental damage to the brain or to the 
membrane surrounding the brain (dura) can lead to CSF leakage. Damage to the sigmoid sinus, which 
drains blood from the brain to the jugular vein, can lead to abnormal closure or even clotting of the 
sinus itself.4  

One possible solution in mitigating accidental damage to surrounding structures is using a cooperative 
control robot intraoperatively. Previously, the Laboratory of Computational Sensing and Robotics (LCSR) 
has developed such a robot that holds on to the surgical drill, which the surgeon can freely control.5 
Robot-assisted surgery has the potential to reduce hand tremor and limit movement around sensitive 
structures, thereby increasing patient safety and improving long-term outcomes. However, a key 
dependency for realizing this technology in the operating room is providing meaningful information 
about patient anatomy so that the robot can safely guide the surgeon throughout the procedure. 
Effectively, this means highlighting important structures on patient CT imaging that can be registered to 
a robotic system.  

Prior Work 
Previous work in the LCSR has focused on segmenting CTs through registration methods (Figure 1).6 
With a manually segmented template CT, deformable registration methods can map or propagate 
template segmentations to target CTs that have not been segmented before. These segmentations can 
then be locally optimized to produce a final segmentation for the target CT. This segmentation 
propagation method achieves submillimeter accuracy for segmenting inner and middle ear structures, 
with an average surface distance of < 0.2 mm and almost 90% overlap with ground truth segmentations. 
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Figure 1. Pipeline of the segmentation propagation method for temporal bone CT segmentation 

 

Goals & Significance 
Significance: 
Successful completion of this project will allow for more complete virtual safety barriers for robot-
assisted temporal bone surgery. It can also be used to generate patient-specific segmentations as 
learning cases for junior otologists. Finally, this project has the potential to create the most complete 
dataset for model training and research.  

Aside from the NIH OpenEar dataset, the dataset used for this project has the most complete 
segmentations of the temporal bone compared to any other group that has previously published in this 
area. In terms of anatomical boundaries of a mastoidectomy, which is the first step in virtually all 
temporal bone procedures, previous groups have only labeled one: the sigmoid sinus. This project’s 
datasets not only label the sigmoid sinus, but also label the surrounding brain and the external auditory 
canal, which are the remaining mastoidectomy boundaries. By segmenting these areas, a cooperative 
control robotic system can then be able to apply virtual safety barriers to each of these boundaries, 
thereby providing for safe drilling throughout the procedure.  

Broad Goals 
• To evaluate state state-of-the-art deep learning models for semantic segmentation of the 

temporal bone. 
• To build the largest comprehensively annotated temporal bone CT database to date. 

General Experimental Setup 
Our dataset consists of 21 manually segmented high resolution head CTs which have a voxel size of 
0.1mm. The dimensions of the axial CT slices are 512x512 voxels2 with an average z-stack of 494 images. 
The variability in the number of slices is due to differing patient anatomy and cropping parameters. All 
CT images are either of left or right temporal bone CTs with minor or no pathology and no prior 
temporal surgical procedures. The data has 16 labels: temporal bone, malleus, incus, stapes, vestibule 
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and cochlea, vestibulocochlear nerve, superior vestibular nerve, inferior vestibular nerve, cochlear 
nerve, facial nerve, chorda tympani, ICA, sinus and dura, vestibular aqueduct, TMJ, and EAC.   

For running experiments, we used a local 3090 GPU workstation as well as a local 1080Ti GPU 
workstation, both of which have specifications laid out in Table 1. The key takeaway from the setups is 
that both have state-of-the art GPUs with high amounts of VRAM suitable for training on 3D images. SSH 
and VNC access were set up on the local Baltimore setup so that team members could always access the 
computer, even when not nearby physically. 

Table 1: Training rigs. 

 Local California Setup Local Baltimore Setup 

GPU GeForce GTX 1080Ti GeForce RTX 3090 

VRAM 11 GB DDR5 / 32 GB DDR5 24 GB DDR6 

OS Ubuntu Ubuntu 

RAM 32 GB 32 GB 

 

Technical Approach 
Since the dataset used is small for deep learning approaches, other methods must be explored to train 
the model on less data. The method being explored is SSM based deformation, where we create an SSM 
of different deformation fields which were generated from registering a template image with over 40 
other images not in the training, validation, or test set. 

Deep Learning Model 
nnU-Net is a new benchmarking pipeline developed to standardize medical imaging.7 It has top 33 
leaderboard results for 53 different datasets, and effectively is a black box. It can be used to quickly 
establish a benchmark and there are 2D and 3D approaches available. The images are rigidly registered 
to a single template before the model training begins, and each image is intensity-normalized during 
pre-processing.  

Data Augmentation 
Although data augmentation is built into nnU-Net, it is limited to rigid transformations. To provide more 
robust data augmentation, we have built statistical shape models (SSMs) of our temporal bone database 
using deformation fields from diffeomorphic image registration techniques (Figure 2). For each SSM, a 
dataset is designated as a template image. The remaining datasets are then deformably registered to 
the template image to generate inverse deformation fields for each registration process. As long as the 
template image is consistent between registration processes, the inverse deformation fields will have 
the same size and shape, which is requisite for SSM generation with principal component analysis (PCA). 
Once an SSM is generated, new deformation fields can be created by changing the mode weights of the 
model. These deformation fields can then be applied back to the template image and its corresponding 
segmentations to generate new training data for our nnU-Net model. 
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Figure 2. Deformation field SSM workflow. 

Generative Adversarial Network (GAN) Label Refinement 
Using nnU-Net as a standard black box approach can be very effective, as Isensee et. al. has shown. 
However, results can always be improved upon and by using a clever adversarial set up, the labels have 
the potential to be refined further.  

Generally speaking, GANs work by having a generator and a discriminator. The generator creates “fake” 
images, while the discriminator tries to detect the real image when presented with the two. The losses 
are combined and with careful consideration to keep the backpropagation graphs connected, this often 
times increases performance of the generator network. In this case, a pre-trained nnU-Net model can 
serve as the generator, with the ground truth label map and the original volume as the input. Then, the 
output prediction from the generator will be the fake image put into the discriminator, along with the 
original ground truth label map. There will be a loss term from both the generator and adversary, and 
they will be combined as shown in (Figure 3) to get a combined loss. 

To preserve the backpropagation graph on the output predictions, which can be interpreted as a 
probability map of labels, the ground truth label is made to look like a probability map. This is done by 
one-hot encoding the ground truth label, then adding random noise to the ground truth, putting the 
resulting sum through a soft max across the relevant dimension, and then ensuring that the maximum 
probability per voxel of the “real” probability map corresponds to the correct ground truth label. 

 

Figure 3. GAN label refinement workflow. 
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Results 
The out of the box nnU-Net implementation is referenced as the “Vanilla” results, which have 12 
training volumes, and 3 validation volumes. There is a test dataset of 6 volumes but since the project is 
not yet complete, we cannot evaluate the test set yet without introducing bias. The SSM generated 
model (“SSM Gen.”) contains the original template images for the SSM, as well as 10 additional 
generated datasets made from deformations produced from the SSM. Both were trained for 300 
epochs, with an initial learning rate of 0.01. Both mean validation dice scores and mean validation 
modified Hausdorff distances are shown below in Table 1, and the training results are shown in Figure 4 
and Figure 5. 

Table 2. nnU-Net validation accuracy metrics. 

 Class Mean Val DSC  Mean Val HD (mm) 
Vanilla SSM Gen. Vanilla SSM Gen. 

Bone .95 ± .01 .95 ± .03 .001  ± .000 0.016 ± .020 
Malleus .93 ± .02 .85 ± .04 .003  ± .001 0.010 ± .000 

Incus .93 ± .02 .88 ± .02 .003  ± .000 0.037 ± .010 
Stapes .59 ± .16 .46 ± .10 .023  ± .019 0.085 ± .087 

Bony Labyrinth .96 ± .01 .94 ± .02 .003  ± .002 0.003 ± .001 
Internal Auditory Canal .93 ± .02 .84 ± .05 .015  ± .007 0.092 ± .034 

Superior Vestibular Nerve .62 ± .10 .76 ± .03 .099  ± .058 0.018 ± .005 
Inferior Vestibular Nerve .53 ± .32 .71 ± .04 .479  ± .766 0.046 ± .030 

Cochlear Nerve .79 ± .07 .82 ± .02 .131  ± .138 0.034 ± .026 
Facial Nerve .85 ± .04 .86 ± .02 .027  ± .016 0.038 ± .012 

Chorda Tympani .72 ± .09 .52 ± .02 .143  ± .085 0.598 ± .473 
Internal Carotid Artery .93 ± .02 .93 ± .03 .061  ± .067 0.037 ± .033 
Sigmoid Sinus + Dura .80 ± .04 .80 ± .01 .263  ± .366 0.204 ± .105 
Vestibular Aqueduct .67 ± .06 .51 ± .16 .095  ± .098 0.274 ± .228 

Mandible .94 ± .02 .96 ± .01 .002  ± .002 0.001 ± .000 
External Auditory Canal .84 ± .02 .81 ± .05 .130  ± .060 0.351 ± .271 
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Figure 4. Vanilla nnU-Net training progress 

 

Figure 5. SSM Gen. nnU-Net training progress 
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Discussion 
As shown in our results, there is potential to squeeze more performance out of the SSM Gen. nnU-Net 
by potentially training for longer. While there is some separation between the training and validation 
curves, it does not look like divergence since they still are trending downwards, and the evaluation 
metric is trending upwards. More experiments will be conducted to confirm or deny this hypothesis. For 
the actual results, we can see that there is a mix of performance between the Vanilla and SSM Gen. 
model performances. Further analysis is needed to determine whether some differences are statistically 
significant, but for the most part it appears there may be trade-offs in the models, depending on what 
structures are important. This is expected since a single template, even with an infinite number of 
potential deformations, cannot capture all the variability in temporal bone CTs that is natural in human 
anatomy. Regardless, both results satisfy the requirement established at the beginning of the project of 
Hausdorff distances less than 0.6 mm and reach state-of-the art level dice scores, which is impressive 
especially considering the level of class imbalance and oddly shaped structures some of the labels have.  

Progress Evaluation 
Key Activities and Deliverables 
The key activities and deliverables can be found in Table 3. They changed significantly throughout the 
course of the project as results developed and the original plan received feedback. The minimum, 
expected, and maximum activities and corresponding deliverables are laid out, and a Gantt Chart 
including the exact details and timeline is found in Error! Reference source not found.. The original key 
deliverables can be found in the appendix, although a summary of the changes can also be found below. 

Table 3: Activities and corresponding deliverables 

 Activity Deliverable    Status 

M
in

im
um

 

Synthesize deformed temporal bone CTs 
with labels to augment training dataset. 

Statistical shape model of temporal bone 
CTs. 

 

Ex
pe

ct
ed

 

Implementing nnU-Net. Fully functioning model for CT 
segmentation with documentation.  

Training model, then validating nnU-Net 
results on validation and test data. 

Internal validation report with ground truth 
segmentations.  

Application of nnU-Net to external dataset. External validation reports with Western 
University’s dataset.8  

M
ax

im
um

 

Implementing GAN label refinement into 
nnU-Net. 

GAN label refinement model for CT 
segmentation with documentation.  

Final manuscript preparation. Submittable manuscript.  

Application of segmentation model to 
unlabeled dataset. 

High quality segmented temporal bone CT 
dataset using our segmentation models. 
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Originally implementing nnU-Net was a minimum deliverable. This is because we underestimated the 
difficulty of augmenting our dataset, which became the new minimum deliverable for the project. The 
expected deliverables were then a functioning model for CT segmentation with documentation, as well 
as internal validation with ground truth segmentations. This is almost accomplished, but we cannot 
evaluate on the test set without completing all planned studies. The last expected deliverable of nnU-
Net applied to an external dataset has not been met yet, since the collaborator at Western University 
recently had a heart attack and is not yet back to work. We will continue this work in the summer, trying 
to collaborate potentially with Vanderbilt University, or with manually registered NIH data. The GAN 
label refinement has been implemented but needs to be run and tuned; all training has been delayed 
due to unmet dependencies and contingencies that fell through. The final manuscript preparation will 
be completed in the summer as the other studies complete, as with the application of the segmentation 
mode to the unlabeled dataset. 

Dependencies 
The project is mainly virtual so there are few physical dependencies. The dependencies are listed in 
Table 3. The only dependency met on time was the supervision agreement with Dr. Unberath, which 
was resolved in early February. Late in the project we realized that the labels were not consistent 
between two of the annotators. This meant that even though we originally thought the first dependency 
of finalizing labels was completed on time, it was not, and we had to retrain all the models we had 
trained before April. Furthermore, the workstation was delayed in arrival to 4/15, almost 1.5 months 
from the original date, and the contingency plans fell through. With MARCC, the most available GPU, the 
K80, was not suited for the 3D convolutions and mixed precision computing used in the implementation 
of nnU-Net. In short, it would take approximately 10 days to complete 300 epochs of a single training 
instance on MARCC with that GPU. Shortly after discovering this, we attempted to train on Google 
Cloud, but quickly burned through the free credits from the class due to the amount of training 3D 
segmentation problems need (approximately 28 hours per model). In the end this caused some large 
delays in the number of studies we were able to push out, but with the work continuing in the summer 
with all dependencies met, there should be no more major road bumps. 


