
Figure 1. Lateral view of the temporal bone  and underlying anatomical structures.
Credit: Christine Gallup https://otosurgeryatlas.stanford.edu/
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Introduction
• The temporal bone houses a complex geometry of 

nerves, arteries, veins, and hearing and balance 
organs, packed in a small space (Figure 1).

• Due to these conditions, temporal bone surgery poses a 
high risk of accidental damage to surrounding structures 
during free-hand procedures. 

• Robot-assisted microsurgical systems can mitigate 
accidental damage to surrounding structures but require 
accurate labeling of relevant anatomy.

• This project aims to provide an automated system for 
creating high-quality segmentations of patient temporal 
bone CTs, which can be used to inform 
semiautonomous surgical systems about critical patient 
anatomy that should be avoided.

Outcomes and Results
• We use dice score and modified Hausdorff distance to 

quantify our performance.

• We are in the process of procuring an external 
validation set, and by comparing to literature we have 
state-of-the-art results with our current models.

The Problem
• Previous automated segmentation systems for the 

temporal bone (Neves, 2021; Nikan, 2021; Li, 2020) are 
not suitable for surgical workflows because they:

• Require significant post-processing steps and are 
therefore not truly end-to-end.

• Are only trained on a small subset of critical 
structures that should be avoided during surgery.

• Are typically evaluated on structures that are well-
defined and easily distinguished from surrounding 
tissue
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The Solution
• To address these shortcomings, we have:

• Curated 21 high-resolution (0.1 mm/voxel) temporal 
bone datasets each with 16 hand-segmented labels.

• Trained a modified 3D UNet model for semantic 
segmentation of anatomy (Isensee, 2020).

• Explored data augmentation methods with 
deformation field statistical shape models (SSMs).

• Started to improve on this model with by regularizing 
shape consistency (Figure 2).

Publications
• We are preparing a manuscript for IPCAI 2021.

Credits
• Jessica: nnUnet implementation, cloud computing setup.

• Andy: Data procurement, hand-segmentation refinement, 
deformation field SSMs for data augmentation.
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Lessons Learned
• Do not underestimate the importance of dependencies, 

and make sure contingency plans will not fall through.

Future Work
• Work on the project will continue, wrapping up 

unfinished studies, and applying the best models to an 
external dataset as well as releasing a public dataset.

Class
Mean Val DSC Mean Val HD (mm)

Vanilla SSM Gen. Vanilla SSM Gen.
Bone .95 ± .01 .95 ± .03 .001 ± .000 0.016 ± .020

Malleus .93 ± .02 .85 ± .04 .003 ± .001 0.010 ± .000
Incus .93 ± .02 .88 ± .02 .003 ± .000 0.037 ± .010

Stapes .59 ± .16 .46 ± .10 .023 ± .019 0.085 ± .087
Bony Labyrinth .96 ± .01 .94 ± .02 .003 ± .002 0.003 ± .001

Internal Auditory Canal .93 ± .02 .84 ± .05 .015 ± .007 0.092 ± .034
Superior Vestibular 

Nerve
.62 ± .10 .76 ± .03 .099 ± .058 0.018 ± .005

Inferior Vestibular Nerve .53 ± .32 .71 ± .04 .479 ± .766 0.046 ± .030
Cochlear Nerve .79 ± .07 .82 ± .02 .131 ± .138 0.034 ± .026

Facial Nerve .85 ± .04 .86 ± .02 .027 ± .016 0.038 ± .012
Chorda Tympani .72 ± .09 .52 ± .02 .143 ± .085 0.598 ± .473

Internal Carotid Artery .93 ± .02 .93 ± .03 .061 ± .067 0.037 ± .033
Sigmoid Sinus + Dura .80 ± .04 .80 ± .01 .263 ± .366 0.204 ± .105
Vestibular Aqueduct .67 ± .06 .51 ± .16 .095 ± .098 0.274 ± .228

Mandible .94 ± .02 .96 ± .01 .002 ± .002 0.001 ± .000
External Auditory Canal .84 ± .02 .81 ± .05 .130 ± .060 0.351 ± .271
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Figure 2. Modified 3D UNet architecture for temporal bone segmentation. The backbone is 
nnUnet, which produces a prediction that is passed into a discriminator. This discriminator 
determines if the input volume is the ground truth or a prediction from nnUnet.

Table 1. Main Results


