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Clinical Motivation 
Operating in the temporal bone and lateral skull base is technically challenging. This region contains a 

complex geometry of nerves, arteries, veins, the end-organs for both hearing and balance, as well as the 

cranial nerves responsible for speech and swallowing.1 To access this region, surgeons drill through 

varying densities of bone to identify surgical landmarks. In addition to the limited visibility of the surgical 

field and complex anatomical geometry in this space, critical anatomical structures are often within 

millimeters of each other.  

Due to these conditions, temporal bone surgery poses a high risk of accidental damage to surrounding 

structures during free-hand procedures. For example, after cochlear implantation, cochlear 

implantation, 45% of patients experience changes in taste, with 20% of those patients having unresolved 

symptoms by the end of their follow-up period.2 In more rare cases, patients also are at risk for facial 

paralysis due to accidental damage to the facial nerve.3 Accidental damage to the brain or to the 

membrane surrounding the brain (dura) can lead to CSF leakage. Damage to the sigmoid sinus, which 

drains blood from the brain to the jugular vein, can lead to abnormal closure or even clotting of the 

sinus itself.4  

One possible solution in mitigating accidental damage to surrounding structures is using a cooperative 

control robot intraoperatively. Previously, the Laboratory of Computational Sensing and Robotics (LCSR) 

has developed such a robot that holds on to the surgical drill, which the surgeon can freely control.5 

Robot-assisted surgery has the potential to reduce hand tremor and limit movement around sensitive 

structures, thereby increasing patient safety and improving long-term outcomes. However, a key 

dependency for realizing this technology in the operating room is providing meaningful information 

about patient anatomy so that the robot can safely guide the surgeon throughout the procedure. 

Effectively, this means highlighting important structures on patient CT imaging that can be registered to 

a robotic system.  

Prior Work 
Previous work in the LCSR has focused on segmenting CTs through registration methods (Figure 1).6 

With a manually segmented template CT, deformable registration methods can map or propagate 

template segmentations to target CTs that have not been segmented before. These segmentations can 

then be locally optimized to produce a final segmentation for the target CT. This segmentation 

propagation method achieves submillimeter accuracy for segmenting inner and middle ear structures, 

with an average surface distance of < 0.2 mm and almost 90% overlap with ground truth segmentations. 
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Figure 1. Pipeline of the segmentation propagation method for temporal bone CT segmentation 

 

Goals & Significance 

Significance: 
Successful completion of this project will allow for more complete virtual safety barriers for robot-

assisted temporal bone surgery. It can also be used to generate patient-specific segmentations as 

learning cases for junior otologists. Finally, this project has the potential to create the most complete 

dataset for model training and research.  

Aside from the NIH OpenEar dataset, the dataset used for this project has the most complete 

segmentations of the temporal bone compared to any other group that has previously published in this 

area. In terms of anatomical boundaries of a mastoidectomy, which is the first step in virtually all 

temporal bone procedures, previous groups have only labeled one: the sigmoid sinus. This project’s 

datasets not only label the sigmoid sinus, but also label the surrounding brain and the external auditory 

canal, which are the remaining mastoidectomy boundaries. By segmenting these areas, a cooperative 

control robotic system can then be able to apply virtual safety barriers to each of these boundaries, 

thereby providing for safe drilling throughout the procedure.  

Broad Goals 
• To evaluate state state-of-the-art deep learning models for semantic segmentation of the 

temporal bone. 

• To build the largest comprehensively annotated temporal bone CT database to date. 

General Experimental Setup 
Our dataset consists of 23 manually segmented high resolution head CTs which have a voxel size of 

0.1mm. The dimensions of the axial CT slices are 512x512 pixel2 with an average z-stack of 494 images. 

The variability in the number of slices is due to differing patient anatomy and cropping parameters. All 

CT images are either of left or right temporal bone CTs with minor or no pathology and no prior 

temporal surgical procedures. The data has 17 labels: temporal bone, malleus, incus, stapes, vestibule 
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and cochlea, vestibulocochlear nerve, superior vestibular nerve, inferior vestibular nerve, cochlear 

nerve, facial nerve, chorda tympani, ICA, sinus and dura, vestibular aqueduct, TMJ, and EAC, and foreign 

body (background).   

For running experiments, MARCC and a local workstation will be used, both of which have specifications 

laid out in Table 1. The key takeaway from the setups is that both have state-of-the art GPUs with high 

amounts of VRAM suitable for training on 3D images. 

Table 1: Training Rigs 

 Temporary Setup Big Rig 

 Cloud: MARCC Baltimore Local Setup 

GPU NVIDIA K80, V100  GeForce RTX 3090 

VRAM 24 GB DDR5 / 32 GB DDR5 24 GB DDR6 

OS Ubuntu / CentOS Ubuntu / Windows 

RAM 16 to 64 GB 32 GB 

 

Technical Approach 
Since the dataset used is small for deep learning approaches, other methods must be explored to train 

the model on less data. The methods being explored will be semi-supervised pre-training and data 

generation. Then, three different models will be implemented, and their results compared. 

Managing the Small Dataset 

Data Generation 
CT scans can range anywhere from 0.1 mm resolution to greater than 2mm resolution. Lower resolution 

CT scans of the temporal bone can be simulated by down sampling the data, then up sampling to the 

original dimensions. Furthermore, the data can be augmented to simulate different CT protocols, for 

example, ones optimized for soft tissue instead of bony structures. 

Semi-Supervised Pre-Training 
Using the segmentation propagation method described in the Prior Work section, the dataset can be 

expanded to 44 datasets at time of writing and is continuing to increase in size as more CT volumes are 

registered. Using these deformed volumes and segmentations preserves the overall quality of 

segmentations but may increase training bias due to similarity between deformed segmentations and 

the template segmentations from which they were derived. Importantly, these deformed segmentations 

can be used as good initial labels for their corresponding patient CT volumes to provide more ground 

truth images. Further exploration of data generation is being pursued in the form of statistical shape 

modeling of deformation fields generated via the segmentation propagation method. However, 

depending on the time constraints, more data may be synthesized through random deformable 

registration. 
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Models 

nnUnet  
nnUnet is a new benchmarking pipeline developed to standardize medical imaging.7 It has top 33 

leaderboard results for 53 different datasets, and effectively is a black box. It can be used to quickly 

establish a benchmark and there are 2D and 3D approaches available. 

AH-Net  
Anisotropic Hybrid Network (AH-Net) is a model that can leverage pre-trained 2D models and 

extrapolate the learned weights to apply to image volumes.8 This reduces computational need for 3D 

neural network training by using pre-training on 2D images and leverages 3D convolutions to decrease 

redundant calculations that occur when doing slice-level 2D analysis. This model outperformed common 

architectures (UNet, 3D ResNet) for a similar application (segmentation of micro CTs on ears).9 The 

model code is released on GitHub, although the dataset and dataloader functions will need to be coded 

by the group.  

PWD-3D Net 
PWD-3D net is a patch-based network that has been used to segment similar CT scans, albeit with 

different labels. It has shown good results with a high dice score for temporal bone segmentation (0.86) 

and low Hausdorff distance (0.755mm).10 A concern when working with 3D data is always computational 

power. Since this uses balanced class patch-based sampling, the effective load is decreased since the 

network only operates on a small subset of the voxels at once. 

Key Activities and Deliverables 
The key activities and deliverables can be found in Table 2. The minimum, expected, and maximum 

activities and corresponding deliverables are laid out, and a Gantt Chart including the exact details and 

timeline is found in Figure 2. 

Table 2: Activities and Corresponding Deliverables 

 Activity Deliverable 

M
in

im
u

m
 

Implementing nnUnet Fully functioning model for CT segmentation. 

Training/validating nnUnet results on test data. 
Internal validation report with ground truth 
segmentations. 

Ex
p

ec
te

d
 Implementation of three different models for CT 

segmentation 
Comparison report of different models for CT 
segmentation (including code). 

Training/validating the chosen three models on test 
data. 

Accuracy and performance reports for CT 
segmentation models. 

M
ax

im
u

m
 

Final manuscript preparation. Submittable manuscript. 

Application of best model to unlabeled dataset. 
High quality segmented temporal bone CT dataset 
using our segmentation models. 

Application of models to external dataset. 
External validation reports with Western 
University’s dataset.10 
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Dependencies 
The project is mainly virtual so there are few physical dependencies. The dependencies are listed in Table 3. The project team members already 

have access to MARCC, so no such dependency exists for that. The annotations were finalized before any training began, and Dr. Unberath has 

agreed to be a deep learning mentor for the project, so two of the dependencies originally proposed have been resolved.  

Table 3: Dependencies 

Dependency Need Status Follow-up Contingency Plan Deadline Effect 

Label/Annotation 

Finalization  

Need Data to Train 100% Done. Check-in with 

annotators EOD 

2/11 

Use unfinalized 

labels to 

debug/test with. 

2/12 Can use preliminary labels 

(mostly done) to train/debug 

with 

Workstation 

Arrival  

Computational 

Power and 

Availability 

Received 

Quote from 

Approved 

Vendor. 

Check-in with JHU 

representative for 

purchase approval. 

Continue to use 

gcloud/MARCC 

2/27 If workstation purchase not 

approved, will continue to use 

MARCC/gcloud. Potentially, 

depending on GPU availability, 

it may take longer to train 

some implementations and 

reduce the overall # of network 

architectures implemented 

Dr. Unberath 

Supervision 

Agreement 

Need a Deep 

Learning 

Consultant for the 

project 

100% Done. 

Dr. Unberath 

has agreed to 

be an advisor. 

Meeting with Dr. 

Unberath every 

Friday 

Max (technical 

consultant) has 

deep learning 

experience, 

continue project 

with him as lead. 

2/12 May run into some issues if 

Max’s expertise cannot help us 

through some issues, although 

the risk is low, since we are 

implementing methods that 

have been shown to work on 

similar datasets. 
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Timeline 
The timeline for this project can be broken down into nine main tasks, outlined in Figure 2. This includes finalizing the data, setting up the 

environment, generating data, implementing three different networks, external dataset validation, applying the best model to an unlabeled 

dataset, and then preparing a manuscript to submit. The minimum deliverables are expected by 3/25/2021, expected deliverables by 4/11/2021, 

and final deliverables by 5/4/2021. 

 

Figure 2: Project Timeline



 8 

Team Members & Roles 
The team consist of: 

• Jessica Soong (jsoong1@jhu.edu) 

MSE Student, LCSR, second-year 

Responsible for environment setup, patch-based model or AH-Net implementation and writeup, 

external dataset validation 

• Andy Ding (andy.ding@jhmi.edu)  

MSE Student, LCSR & Department of Biomedical Engineering, first-year 

Responsible for environment setup, patch-based model or AH-Net implementation and writeup, 

dataset ground truth management 

The team will also have some shared responsibilities, which are the data generation, nnUnet 

implementation and write-up, and the final manuscript preparation. 

Mentors 
The mentors consist of: 

• Dr. Russell Taylor (rht@jhu.edu) 

Professor, Department of Computer Science 

Expertise in medical imaging, computer-integrated surgery. 

• Dr. Francis X. Creighton (francis.creighton@jhmi.edu) 

Assistant Professor, Department of Otolaryngology 

Expertise in lateral skull base surgery. 

• Dr. Mathias Unberath (unberath@jhu.edu) 

Professor, Department of Computer Science 

Expertise in medical imaging, deep learning. 

• Maxwell Zhaoshuo Li: (zli122@jhu.edu) 

PhD Candidate, Department of Computer Science 

Expertise in deep learning, computer-integrated surgery, medical imaging. 

Management Plan 

Meetings: 
At time of writing, there are weekly meetings with LCSR every Wednesday at 3 PM, as well as meetings 

with Dr. Unberath for the Models and Registration meeting every Friday at 2 PM. Jessica and Andy will 

meet on an ad hoc basis and consult with Max as needed. 

Platforms: 
Multiple platforms will be used for communication as well as documentation, file-sharing, and report 

writing.  

• Communication: For communication, a slack channel with LCSR will be used. This will be 

supported with e-mail and Zoom meetings. 

• Code: Code will be maintained on a private repository on GitHub. 

mailto:jsoong1@jhu.edu
mailto:andy.ding@jhmi.edu
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• Data & Filesharing: The anonymized data will be shared through Hopkins OneDrive, which is 

secure and encrypted. Files such as the report and presentations will also be shared through 

OneDrive and the CIS II website. 

• Report Writing: OneDrive will be used for basic report writing, and LaTeX (Overleaf) will be used 

for final manuscript preparation. 
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