

Automated Segmentation of Temporal Bone CT Imaging for Robot-Assisted Microsurgery

Group 4: Jessica Soong, Andy Ding Mentors: Dr. Francis X. Creighton, Dr. Russell H. Taylor, Dr. Mathias Unberath, Max Zhaoshuo Li

Clinical Motivation

- Temporal bone anatomy is geometrically complex
- Surgical access requires drilling through mastoid bone
- Critical structures are often within millimeters of each other [1]
- Accidental damage can lead to: [2-4]
 - Changes in taste
 - Facial paralysis
 - CSF leakage
 - Closure of the sigmoid sinus

Clinical Motivation

- Possible solution: CT-registered robot-assisted surgery [5]
 - Reduces hand tremor
 - Reduces risk of intraoperative injury
 - Needs information about patient anatomy

Delta

PROJECT VISION

Automated segmentation system of the temporal bone to prevent intraoperative injury of critical structures during robot-assisted microsurgery

Prior Work: Segmentation Propagation

Mapping template segmentations onto new CTs using registration techniques [6]

Prior Work: Deep Learning Semantic Segmentation

Comparison of ResNet, UNet, and AH-Net
 [7]

Patch-based segmentation (PWD-3DNet)
 [8]

(c)

Goals & Significance

- Evaluate state-of-the-art deep learning models for semantic segmentation of the temporal bone
- Build the largest comprehensively annotated temporal bone CT database for future use in research and industry

If successful, this project will provide:

- Robust virtual safety barriers for robot-assisted temporal bone surgery
- Patient-specific segmentations to reinforce anatomical knowledge in junior otologists
- Most complete dataset for training future deep learning networks

General Setup

- Dataset:
 - 23 manually segmented high resolution head CTs (voxel size ~ 0.1 mm) of left and right ears
 - 512 x 512 x 512 3D image files (DICOM / NRRD)
- Rigs:
 - Temporary Setup Used for training before laboratory rig arrives
 - Big Rig Used for training after arrival.

	Temporary Setup	Big Rig					
	Cloud: MARCC	Baltimore Local Setup					
GPU	NVIDIA K80, V100	GeForce RTX 3090					
VRAM	24 GB DDR5 / 32 GB DDR5	24 GB DDR6					
OS	Ubuntu / CentOS	Ubuntu / Windows					
RAM	16 to 64 GB	32 GB					

Technical Approach [1/2]

- Data Generation
 - Blur data to simulate different CT protocols (optimized for soft-tissue vs. bony structures).
 - Re-sample data to simulate lower-resolution data.
- nnUnet (Isensee F et al)
 - New benchmarking pipeline developed to standardized medical imaging.
 - 33 top leaderboard results for 53 different datasets with this method.
 - 2D and 3D approach available.

Technical Approach [2/2]

- AH-Net (Liu S. et al, Neves, C.A., Tran, E.D., Kessler, I.M. et al)
 - Due to network architecture, it can leverage models trained on 2D images and extrapolate the learned weights to apply to image volumes.
 - This model outperformed common architectures (UNet, 3D ResNet) for a similar application (segmentation of micro CTs on ears).
- PWD-3DNet (S. Nikan *et al.*)
 - Uses 3D patches to reduce computational load + balanced patch sampling method.
 - ► High dice score and low hausdorff distance.

Key Deliverables

	Deliverable
unu	Fully functioning model for CT segmentation.
Minir	Internal validation with ground truth segmentations.
cted	Comparison of Different Models for CT Segmentation (including code).
Expe	Accuracy and performance reports for CT segmentation models.
F	Manuscript preparation.
Jaximun	Building a high quality segmented temporal bone CT dataset using our segmentation models.
2	External validation with Western University's dataset.

Dependencies

- Label/Annotation Finalization (2/12)
- Workstation arrival (2/27) soft dependency
 - Contingency, continue to use gcloud/MARCC
 - Already have access to MARCC

Timeline/Milestones

Milestones	Start	End		
Finalize Ground Truth Labels	2/9	2/12		
 Setup Environment Transferring dataset to MARCC Installing dependencies for nnUNet and other DL models 	2/13	2/19		
Finish Data Generation	2/17	2/23		
 nnUnet Implementation Debug Phase 2D Ensemble Training + Validation Phase 3D Training + Validation Phase 	2/24	3/25		
 AH-Net Implementation Debug Phase 3D Training + Validation Phase 	3/8	4/2		
Patch-Based Network Implementation Debug Phase 3D Training + Validation Phase 	3/27	4/19		
Final Technical Report + Code	3/26	5/4		

Gantt Chart

	Task same	Ja February 2021			March 2021					April 2021				
	lask name	31-6 (5w)	7-13 (6w)	14-20 (7w)	21-27 (8w)	28-6 (9w)	7-13 (10w)	14-20 (11w)	21-27 (12w)	28-3 (13w)	4-10 (14w)	11-17 (15w)	18-24 (16w)	25-1 (17w)
1	Dataset Cleanup		Dat											
1.1	Finalize Ground Truth Labels		Fin											
2	Environment Setup		- Envir	onment Setup									Critics	l Dath
2.1	Transfer Dataset to MARCC			Transf									Citica	ii Falli
2.2	Install Dependencies for Models		Install D	epen									Subpr	ojects
3	Data Generation			L	Data Genera								Taalua	
3.1	Resampled Dataset				Resampled D								Tasks	
3.2	Blurred Dataset				Blurred Dataset									
4	nnUnet Implementation				_		nnUnet l	nplementation						
4.1	Debug Phase					Deb	oug Phase							
4.2	2D Training/Validation Phase							→ 2D Traini	ing/Validation Pha	ase				
4.3	3D Training/Validation Phase							L→ 3D Traini	ing/Validation Pha	ase				
5	AH-Net Implementation							AH-Ne	t Implementatio	n				
5.1	Debug Phase							Debug Phase						
5.2	Training/Validation Phase								L→ Trainin	g/Validation Pha	se			
6	Patch Based Model Implementation									Patch Based M	odel Implement	ation		
6.1	Debug Phase									Debug Phase				
6.2	Training/Validation Phase										→ Training/	Validation P		
7	Report Writing											Report Writi	ng	
7.1	nnUnet Write-up									L→ nr	nUnet Write-up			
7.2	AH-Net Write-up										AH-N	let Write-up		
7.3	Patch Write-up												Patch Write-up	
7.4	Comparisons + Finalization of Report												,	Comparisons

Roles and Responsibility

- ► The Team:
 - ► Andy Ding and Jessica Soong: Shared responsibilities for all tasks.
- Mentors:
 - Dr. Russell Taylor: Technical Lead
 - Dr. Francis X. Creighton: Clinical Lead
 - > Dr. Mathias Unberath (TBD): Deep Learning Lead
 - Maxwell Zhaoshuo Li: Technical Consultant

Management Plan

Meetings:

- Weekly meetings with the LCSR (Wednesdays)
- Weekly meetings with Dr. Unberath (Fridays)
- Biweekly meetings with Max Li (TBD)

Communications:

Slack channel with the LCSR (Technical Leads/Consultants)

File Sharing:

- Data/Reports: Hopkins OneDrive, CIS II website
- Code: Private repository on Github

Reading List

- S. Nikan *et al.*, "PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans," in *IEEE Transactions on Image Processing*, vol. 30, pp. 739-753, 2021, doi: 10.1109/TIP.2020.3038363.
- Neves, C.A., Tran, E.D., Kessler, I.M. *et al.* Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. *Sci Rep* **11**, 116 (2021). <u>https://doi.org/10.1038/s41598-020-80619-0</u>
- Ii, Xiaoguang & Gong, Zhaopeng & Yin, Hongxia & Zhang, Hui & Wang, Zhenchang & Zhuo, Ii. (2020). A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images. Neural Networks. 124. 10.1016/j.neunet.2020.01.005.
- Gibson, Eli et al. "NiftyNet: a Deep-Learning Platform for Medical Imaging." Computer Methods and Programs in Biomedicine 158 (2018): 113–122. Crossref. Web.
- Liu S. et al. (2018) 3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes. In: Frangi A., Schnabel J., Davatzikos C., Alberola-López C., Fichtinger G. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11071. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-00934-2_94</u>

References

- 1. Cousins VC. Lateral skull base surgery: a complicated pursuit?. *The Journal of Laryngology & Otology*. 2008;122(3):221-229. doi:10.1017/s0022215107000436.
- 2. Lloyd S, Meerton L, Cuffa RD, Lavy J, Graham J. Taste change following cochlear implantation. *Cochlear Implants International*. 2007;8(4):203-210. doi:10.1179/cim.2007.8.4.203.
- 3. Fayad JN, Wanna GB, Micheletto JN, Parisier SC. Facial Nerve Paralysis Following Cochlear Implant Surgery. *The Laryngoscope*. 2003;113(8):1344-1346. doi:10.1097/00005537-200308000-00014.
- 4. Zanoletti E, Cazzador D, Faccioli C, Martini A, Mazzoni A. Closure of the sigmoid sinus in lateral skull base surgery. *Acta Otorhinolaryngol Ital*. 2014;34(3):184-188.
- 5. Razavi CR, Wilkening PR, Yin R, et al.. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. *Otolaryngology–Head and Neck Surgery*. 2019;161(5):852-855. doi:10.1177/0194599819861526.
- 6. Sinha A, Leonard S, Reiter A, Ishii M, Taylor RH, Hager GD. Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations. In: ; 2016.. doi:10.1117/12.2217337.
- 7. Neves CA, Tran ED, Kessler IM, Blevins NH. Fully automated preoperative segmentation of temporal bone structures from clinical CT scans. *Scientific Reports*. 2021;11(1). doi:10.1038/s41598-020-80619-0.
- 8. Nikan S, Van Osch K, Bartling M, et al.. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans. *IEEE Transactions on Image Processing*. 2021;30:739-753. doi:10.1109/tip.2020.3038363.
- 9. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. *Nature Methods*. 2021;18(2):203-211. doi:10.1038/s41592-020-01008-z.