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Introduction
Hemothorax (HTX)—blood accumulation in the pleural cavity around the 
lungs—patients are currently treated by qualitative estimates of blood 
volume using CT scans. To automate this analysis, deep neural networks are 
employed to segment hemothoraces from patient CT scans. The network 
segmentation is converted to an estimated volume, yielding an adjusted R of 
0.91 compared with manually segmented volume, which is then used as a 
predictor for a composite variable: patient requires massive transfusion or 
dies. Together with high-level patient data, a random forest classifier 
achieves an auROC of 0.944, indicating strong predictive capabilities for 
the composite variable.

Problem
Qualitative grading for HTX are 
● imprecise and subjective
● reliant on expert radiologists for reliability
● sometimes inconsistent among experts

Manual segmentations for HTX are
● precise but time-impermissible

Prior automated models for pleural effusion (excess liquid) are [4]
● rule-based or atlas-based
● insufficient in handling

○ anatomical distortion
○ heterogeneity of attenuation
○ traumatic lung scans

No prior attempt for automatic HTX volumetry, though necessary for it 
helps doctors with planning.
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Data
● 94 cases

○ hemothorax CT scans
○ corresponding manual segmentations
○ baseline demographics and clinical characteristics

● 77 cases remained upon removing
○ CT scans with erroneous voxel dimension metadata
○ Patients without clinical data readings

● 6 clinical variables available at point of care are chosen
○ age, sex, injury type, heart rate, systolic blood pressure, lactate 

concentration
●  Volume estimation + clinical variables are used to predict a 

composite patient outcome (massive transfusion or mortality)

Three deep networks are evaluated: UNet (2.5D) [1], UNet 3D [2], 
and UNet-FAN. UNet-FAN, the architecture of which is illustrated 
below, was developed as a combination UNet (2.5D) and PIPO-FAN 
[3]. PIPO-FAN validation yielded poor performance, so the trained 
UNet models were used as replacement to the PIPO module to train 
the FAN scale-invariant attention module post hoc. This transfer 
learning approach allowed the FAN module to apply attention 
mechanisms to the multiscale features learned in UNet, slightly 
improving dice.

It was observed that training deep segmentation networks on left and 
right lungs individually yielded superior dice scores than from training 
on the union of the left and right masks. The final predicted volume 
takes the union of the left and right prediction masks.
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Manual: 1502.5 mL  Auto: 1350.8 mL  DSC: 0.83

Manual: 848.5 mL  Auto: 711.2 mL  DSC: 0.84

Manual: 527.5 mL  Auto: 605.3 mL  DSC: 0.77

Manual: 80.6 mL
Auto: 80.2 mL
DSC:  0.46
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Figure A: Dot matrix plot with best-fit line and 95% CI shows 
correlation between automated volume (vol.) and manual 
hemoperitoneum volume. The prediction from human expert and 
our deep learning is consistent. 
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Figure B: Bland-Altman plot shows 95% limits of agreement and 
measurement bias. On average, there is a 0.6-mL underestimation by 
the deep learning algorithm. The bias is relatively small and standard 
deviation is 155.6 mL. 
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Figure C: Distribution of Dice similarity coefficients (DSCs). The box plot in C2 shows DSC improves/variance decreases with increasing vols  at 
volume range 0-600 ml, (Levene’s test, p < 0.00001) explaining low DSCs in rows 4 and 5 (image left). In volume range >600ml, we have only 7 
instance and some of them are outliers, so the behavior in this range is not clear.

Figure D: Clustered box and whisker plots show prediction of a 
composite outcome for the need for massive transfusion and in 
hospital mortality. Manual and HTXvol-auto vols both have 
significant association with composite outcome (MT + IHM), with 
p = 0.0003 and 0.015 respectively.
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Logistic regression was performed to ascertain the predictive power of HTX volume for the composite variable using 5-fold cross validation. 
The results of logistic regression are then compared to the logistic regression performance on the manual qualitative estimates from the 
consensus of two expert radiologists, categorized as low, medium, and high.

In addition to univariate analysis, clinical features are used for multivariate predictions. Eight machine learning models [6] are evaluated: 
logistic regression, bayesian network with global architecture search, discrete naive bayes, gaussian naive bayes, decision table, linear support 
vector machine, RBF support vector machine, and random forest. The random forest models performed best, demonstrating comparable 
performance between the manual and automatic features for the composite variable prognostics.

In general, the deep network predicted volume and manual segmented volume 
are highly associated with adjusted R=0.91 and the bias is very low at -0.6 mL. 
The Dice similarity coefficients improves and its variance decrease as volume 
increase. The small hemothoraces with lesser dice scores are clinically 
insignificant compared to the larger accumulations of blood. Therefore, it is 
important that the performance of the automated volume estimates is best for 
larger hemothoraces.
Both manual and predicted volume have significant association with the 
require for mass transfusion and in-hospital mortality. 
We are able to predict the composite outcome of MT+IHM using automated 
prediction volume and 6 patient metadata (Age, Sex, HR, BP, lactate, 
injury-type: blunt / penetrating) with random forest model and reach an 
auROC of 0.9440. This is at least as good as using expert information from 2 
radiologists.
The results suggest that the automated methods can replace expert analysis 
with comparable performance, thereby reducing costs, labor, and improving 
availability to accurate prognostics.

Data Model MCC AUROC AUPRC_N AUPRC_P RMSE
uni_qual Logistic 0.4931 0.7609 0.6219 0.6590 0.5390
uni_ufan Logistic 0.1746 0.7081 0.7232 0.4900 0.5344
mul_qual RF 0.6370 0.9450 0.9860 0.8550 0.2829

mul_ufan RF 0.6870 0.9440 0.9870 0.7680 0.2831

Visualization
References

Discussion

Future Work
1. Computing loss for each decoding layer
2. Adding data augmentation to counter the lack of large HTX cases
3. Real-world clinical application
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Lessons Learned
1. Time estimates were too short, particularly for the maximal deliverables
2. Agile development was more effective than waterfall methods
3. Concentrating developer time on related tasks was most effective
4. Making scripts/executables flexible with respect to the environment, such as 

directory structures and command line arguments, was important
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Figure E: Box plot of Dice score of all deep net modes used. 
UNet-FAN achieves slightly higher dice score than UNet and much 
better than UNet 3D for all data: left lung, right lung, and the union 
of the lungs.

Table: UNet-FAN alone does not predict the 
composite patient outcome as well as the qualitative 
measurement. With the addition of clinical data, the 
automated multivariate model achieves comparable 
performance to the qualitative manual ones.


