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1 Introduction

Magnetic Resonance Imaging (MRI) is a commonly used imaging technology for the diagnosis
of the hip osteonecrosis, which is a disease resulting in the death of bone cells. Early stage
of osteonecrosis is often treated with core decompression, a commonly used surgical method
for the removal of the ostenecrotic tissue (dead bone) from the femoral head. This surgical
procedure involves drilling into the dead bone area, result in reduced pressure and increased
blood flow.

Before the core-decompression procedure is performed, pre-operative MRI of the affected
joints will be taken for the surgeons to identify the areas affected by the necrotic tissue
as well as perform the planning of the drilling paths, as shown in Fig 1 Surgeons usually
take intraoperative X-ray shots to monitor the procedure. However, there are currently no
simple method that could easily translate the tool trajectories annotated on the MR scans
to the intraoperative X-ray shots. The interpolation between the MR and X-ray volumes is
essentially a registration problem between the two modalities.

Registration between different imaging modalities has been a popular topic considering
its wide applications: helping surgeons during operations, monitoring the infected regions
on the patients more easily, and reducing the number of scans that are required for patients
to go through. Nevertheless, direct automatic registration between MR volumes and x-ray
images has been challenging due to the lack of cross-modality information between the two
modalities. Current MR-to-x-ray registration methods are mostly performed with assisting
hardware or software model setup. Ashvin et al.[1] managed to calculate rigid transforma-
tion between MRI and x-ray by utilizing external fiducial markers that are visible under
both imaging modalities. Many studies attempted to perform registration between breast
MRI and x-ray mammography as they are the two main image modalities used for detection
and diagnosis of breast diseases, and proposed approaches include the generation of Digi-
tally Reconstructed Radiographs (DRR) from MRIs before registering to X-rays [2], as well
as gradient-based methods with the construction of patient-specific biomechanical models
before performing gradient projection and registration [3].

Recently, the registration approach between CT and x-rays [4, 5] or between CT and
flouroscopy [6, 7] has been studied and implemented with very small error. Therefore, the
aim of this project is to create image translation from MR volumes to CT volumes; once the
synthesized CT volumes are acquired, the existing CT-to-x-ray registration methods could
be implemented to interpolate any annotations or segmentation made in CT/MR domain to
x-ray images.
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Figure 1: Illustration of the annotated drilling path in both MRI (left) and X-ray (right)
during core decompression surgery [8]

Various MR-to-CT synthesis algorithms has been proposed such as dictionary-based
learning approaches [9, 10], random forest-based methods [11], and deep learning-based
methods [12]. This project aims to achieve MR-to-CT synthesis using deep learning-based
cycle generative adversarial networks (cycleGAN)[12]. The generation of synthesized CT
volumes would be a crucial step when we move on to CT-to-x-ray registration using the
synthesized CTs.

2 Materials

2.1 Datasets

Two datasets are used in this study: the Arkansas dataset and the New Mexico Decedent
Image Database (NMDID).

2.1.1 Arkansas Dataset

The Arkansas dataset consists of CT and MR volumes from 32 patients with osteonecrosis.
The MRI sequence of the MR images include T1 and T2 weighted spin echo and short tau
inversion recovery (STIR). To improve the consistency of the MR training images, only T1
weighted coronal MRI from 19 patients and 6 coronal CT scans are used in this project. The
field of view (FOV) of MR volumes in Arkansas dataset ranges from 350mm to 400mm, the
matrix size ranges from 360×360 to 528×528, and the slice thickness ranges from 5.00mm
to 8.40mm. The FOV of CT volumes in Arkansas dataset is 500mm, the matrix size is
512×512, and the slice thickness ranges from 2.00mm to 3.02mm.

Patients with CT volumes available also have their corresponding MR volumes available.
Even though for the training of cycleGAN networks, the paired images are not required, the
2 paired MR-CT volumes would be used later for network evaluation purpose.

2.1.2 New Mexico Decedent Image Database (NMDID)

The NMDID consists of full body CT scans, and in this work a total of 12 coronal torso
volumes are used. The FOV is 800mm, the matrix size is 512×512, and the slice thickness
is 3.00mm.
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Figure 2: Datasets used in this work for CycleGAN network training

2.2 Dataset Generation

2.2.1 Train/Test set split

Combining the Arkansas Dataset and NMDID, there are a total of unpaired 19 MR volumes
and 18 CT volumes. To ensure that no paired information are used during the training phase
of cycleGAN, 5 MR volumes and 3 CT volumes in Arkansas Dataset are used preserved as
the evaluation dataset, which includes the paired MR and CT volumes from 2 patients. Two
additional CT volumes in NMDID are also added to the evaluation dataset. The remaining
14 MR volumes and 13 CT volumes are used for training.

2.2.2 Data preprocessing

In this study, only coronal MR and CT slices are used. Each MR volume in the Arkansas
Dataset contains about 20 coronal slices, and each CT volume in Arkansas Dataset and
NMDID contains about 100 coronal slices. Due to the different FOV between the CT scans
in Arkansas Dataset and NMDID as described in Section 2.1, a region selection process is
performed so that the all unapired MR and CT images are roughly aligned to each other.
The region selection process is achieved by cropping the original coronal slices so that the
new volume centers around the hip region with roughly the same FOV. The volumes are
then resized and padded to 290×290 for MR volumes and 320×320 for CT volumes.

Since we do not have sufficient training volumes available, offline data augmentation is
performed to enhance the size and quality of our training dataset. The transform modules
from Medical Open Network for AI (MONAI) [13] framework is used in this project to provide
data preprocesssing as well as augmentation support for the 3D data. In this project, the
following transforms are used:

• Intensity Thresholding: The intensity range of both MR and CT volumes are thresh-
olded so that the range becomes [0, 400] for MR volumes and [-1000, 1400] Hounsfield
unit (HU) for CT volumes. This is mainly to remove unreasonable values within the
volumes.
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• Intensity Normalization: Since the MR volumes in the Arkansas dataset are collected
under various settings and different FOV, the inconsistency between the intensity range
has been quite large. Studies has shown that for image synthesis tasks using MR
images, performing intensity normalization in pre-processing step could substantially
improve the result [14]. Therefore, the Z-score intensity normalization is carried out.
Denoting the input MR image as I(x) (pixel position x ⊂ N3), the intensity normalized
image IIN(x) is obtained as follow:

IIN(x) =
I(x)− µ

σ

where µ is the mean intensity and σ is the intensity standard deviation of the input
volume.

• Intensity re-scaling: The intensity of both MR and CT volumes is re-scaled to [0, 255].

• Augmentation - random zoom: The volumes are zoomed within the range of [0.9, 1.1]
along the anteroposterior axis to interpolate the pixel values. Values of zeros are added
around the volume while zooming out.

• Augmentation - Random rotate: The volumes are rotated by [-0.1, 0.1] radians along
the anteroposterior axis. Values of zeros are added to fill in empty values during the
operation.

• Augmentation - Random spatial crop: Random cropping is performed to crop both
the CT and MR volumes to 256×256×3 so that the output volume shape aligns with
the cycleGAN input image shape.

For the generation training dataset, all the transforms above are performed; while for
the generation of the test dataset, the augmentation functions are skipped. In addition of
the generation of testing images (with output size of 256×256×3, additional testing volumes
are also generated with output shape of 256×256×ncor, preserving the original number of
coronal slice count ncor. The entire testing volumes are used later for network performance
evaluation.

3 Methods

The proposed MR-to-CT translation training workflow is shown in Fig 3 below. With the
pre-processed training dataset established, the cycle generative adversarial networks (cycle-
GANs) is used for network training.
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Figure 3: MR-to-CT translation training flowchart

3.1 CycleGAN Framework

The approach to perform image-to-image translation is to utilize the cycleGAN network
proposed by Zhu et al. [12]. In a CycleGAN network, the main workflow to translate an
image from MR domain to CT domain as well as the corresponding loss functions are shown
in Fig 4 below, and the same workflow structure is applied to the case of translation from
CT to MR domain.

Figure 4: Workflow of image translation from MR domain to CT domain in a CycleGAN
network

3.2 Training Loss

3.2.1 Adversarial Loss (Ladv)

The goal in our cycleGAN network is to learn the mapping functions between the MR domain
to the CT domain. To achieve this objective, the CT generator GCT generates synthetic
CT given input MR images IMR, while the CT discriminator attempts to distinguish the
synthesized CT images from real CT images IMR. Therefore, the adversarial loss for the
translation from MR to CT domain is formulated as

Ladv(GCT , DCT ) = DCT (GCT (IMR))2 + (1−DCT (ICT ))2

7



Similarly, the adversarial loss for the translation from CT to MR domain (with MR
generator GMR and MR discriminator DMR) is formulated as

Ladv(GMR, DMR) = DMR(GMR(ICT ))2 + (1−DMR(IMR))2

3.2.2 Cycle-consistency Loss (Lcyc)

Cycle-consistency loss calculates the difference between the input real image and the re-
constructed image, which is the inverse mapping of the synthesized image. Reducing the
cycle-consistency loss encourages the network to produce reconstructed images that are iden-
tical to the real images. The cycle-consistency loss is formulated as follow

Lcyc(GCT , GMR) = ||GCT (GMR(ICT ))− ICT ||1 + ||GMR(GCT (IMR))− IMR||1

3.2.3 Structural-consistency Loss (Lsc)

MR-to-CT synthesis through the origial cycleGAN proposed by Zhu et al. [12] often result
in inconsistent structures between input and synthetic images. Previous works that attempt
to perform cross-modality image synthesis often address this problem by implementing ad-
ditional loss functions. Haisa et al. [15] implemented gradient consistency loss base on
the gradient correlation (GC) between the input and output image of the generators; while
Tanner et al. [16] and Yang et al. [17] implemented Modality Independent Neighborhood
Descriptor (MIND) loss to ensure the consistency instead.

In this project, the MIND loss was implemented that calculates the structural consistency
of the generators (Lsc(GCT , GMR)) and the result is compared to the one without this loss
function implemented.

3.2.4 Overall CycleGAN Loss

The overall cycleGAN loss (L) is defined as

L(GCT , GMR, DCT , DMR) =Ladv(GCT , DCT ) + Ladv(GMR, DMR)+

λcycLcyc(GCT , GMR) + λstrLsc(GCT , GMR)

where the cycle consistency weight λcyc and structural consistency weight λsc control the
inportance of the corresponding loss terms.

4 Experiments and Evaluation

To evaluate the performance of the network, several experiments has been carried out. The
evaluation workflow is shown in Fig 5
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Figure 5: Workflow of performance evaluation on the trained network

4.1 Evaluation metrics

The quantitative evaluation of the cycleGAN network performance is achieved by comparing
the mean absolute error (MAE), structural similarity index measure (SSIM)[18], and learned
Perceptual Image Patch Similarity (LPIPS) metric [19].

Given two input images (volumes) I and Î with identical shape, each evaluation metric
is introduced as follow

• Mean absolute error (MAE):

MSE(I, Î) =
1

N

N∑
i=1

(Ii − Îi)2 (1)

where N represents the total number of data values in each image.

• Structural similarity index measure (SSIM):

Structural similarity index is first proposed by Wang et al.[18]. SSIM models any
image distortion by combining the correlation loss, the distortion of luminance, and
distortion of contrast. The SSIM is defined as

SSIM(I, Î) = [l(I, Î)]α · [c(I, Î)]β · [s(I, Î)]γ

where

l(I, Î) =
2µIµÎ + C1

µ2
I + µ2

Î + C1

c(I, Î) =
2σIσÎ + C2

σ2
I + σ2

Î + C2

s(I, Î) =
σIÎ + C3

σI + σÎ + C3

µI =
1

N

N∑
i=1

Ii σ2
I =

1

N

N∑
i=1

(Iij − µI)2 σIÎ =
1

N

N∑
i=1

(Ii − µI)(Îi − µÎ)

In this work, the weights α, β, γ are all set to 1. A high SSIM score represents strong
structural similarity between the two input images and vice versa.

• Perceptual similarity metric (LPIPS): [19] One of the drawbacks of the considered
criteria is their low correlation with the visual perception of a human being. For ex-
ample, low MSE value can be obtained if there are noticeable local distortions. LPIPS,
a similarity metric based on convolutional neural networks (CNN) that approximates

9



the process of perception of visual distortion by a human being has been developed.
The authors provided LPIPS implementation on architectures on AlexNet [20], VGG16
[21], and SqueezeNet [22]. We are using pretrained AlexNet for the LPIPS metric in
this work.

4.2 Ground truth CT

To evaluate the synthesize CT volumes from the CT generator GCT , the ground truth CT
has to be obtained. In the Arkansas dataset, the two subjects with both MR and CT images
available will be used in the evaluation phase.

To perform robust MR-to-CT registration, the registration toolkit from Advanced Nor-
malization Tools (ANTs) [23] were used. 20 landmarks on the pelvis and the femurs are
manually labelled in both the paired MR and CT volumes and are exported as FCSV files.
The ANTs registration software then computes the rigid transformation between the two
sets of input data. The transformation collected is then imported in 3D Slicer, where the
CT volumes are warped using the transformation and exported as the ground truth CT.
Fig 6 illustrates the MR-CT registration result from the same patient after the calculated
transformation was applied on the CT volume.

Figure 6: Visualization of ANTs registration result in 3D Slicer through MR/CT volume
blending

An important observation in Fig 6 is that most parts of femoral shafts and the tissue
around them are missing due to the different FOV in MR and CT when the images were
originally taken. The fact that around 1

6
of our ground truth CT is empty will have an

significant impact when we attempt to compare it with the synthesized CT later.

4.3 Model parameters

To quantitatively evaluate the performance of the network and the dependency on the train-
ing parameters, the following cycleGAN training experiments have been carried out: (1)
Training with dataset size of 4000 MR and 4000 CT images, and with dataset size of 1000
MR and 1000 CT images (2) Training with and without the implementation of structural
consistency loss Lsc. In the case where structural consistency loss is included, the weight λsc
in the loss function is set to 0.2.

Some model parameters remain constant throughout the experiment. The initital learn-
ing rate of cycleGAN training is set to 0.2. The weight of cycle-consistency loss (Lcyc) is set
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to 10. The majority of the models are trained using the 12GB NVIDIA Tesla K80 GPU on
Google Cloud. Each run terminates when reaching epoch number 50, and the best perform-
ing generator weights will be used and evaluated in the evaluation step. The procedure will
be re-run two additional times under the same settings.

5 Results and Discussion

5.1 Training Results

The training results from the cycleGAN generators GCT , GMR are shown in Fig 7 and Fig 8,
respectively. Both synthesized CT and MR images appear to have reasonable image inten-
sity with proper anatomical structures highlighted. However, as mentioned in the previous
section, very few CT volumes in our training dataset captures the femoral shaft. In Fig 7,
it can be observed that the synthesized CTs show good image translation result on bony
structures like pelvis femoral heads, but performs poorly translating the femoral shafts from
MR volumes.

Figure 7: CycleGAN CT generator (GCT ) training results (training size: 4000, with imple-
mentation of structural consistency loss Lstr)

Figure 8: CycleGAN CT generator (GMR) training results (training size: 4000, with imple-
mentation of structural consistency loss Lsc)
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5.2 Evaluation Results

Table 1 below shows the mean squared error (MSE), structural similarity index measure
(SSIM), and perceptual similarity metric (LPIPS) result between the synthesized CT volumes
and the ground truth CT volumes we obtained earlier through ANTs registration. The results
are also visualized in the box plot in Fig 9 below.

1000 training images 4000 training images
Metric Test volume without Lsc with Lsc without Lsc with Lsc

run 1, Subject 1 0.1279 0.1447 0.1425 0.1441
run 1, Subject 2 0.1167 0.1473 0.1144 0.0846
run 2, Subject 1 0.1416 0.0955 0.0790 0.0846

MSE run 2, Subject 2 0.1147 0.1147 0.0775 0.0816
run 3, Subject 1 0.1168 0.1442 0.1060 0.0921
run 3, Subject 2 0.1335 0.1188 0.1119 0.1014
Average ± std 0.1252±0.0100 0.1293±0.0207 0.1052±0.0223 0.0981±0.0216
run 1, Subject 1 0.2744 0.1897 0.1637 0.1385
run 1, Subject 2 0.2192 0.2274 0.2801 0.4487
run 2, Subject 1 0.1151 0.3547 0.4082 0.3075

SSIM run 2, Subject 2 0.3515 0.3515 0.5403 0.5393
run 3, Subject 1 0.2352 0.2601 0.2341 0.3546
run 3, Subject 2 0.2507 0.2272 0.3323 0.3448
Average ± std 0.2410±0.0705 0.2767±0.0663 0.3265±0.1222 0.3556±0.1238
run 1, Subject 1 0.4688 0.4594 0.4355 0.4227
run 1, Subject 2 0.4223 0.4664 0.3984 0.3787
run 2, Subject 1 0.4447 0.4233 0.3667 0.4541

LPIPS run 2, Subject 2 0.4879 0.4879 0.3549 0.3419
run 3, Subject 1 0.4109 0.4356 0.3633 0.3836
run 3, Subject 2 0.4169 0.3909 0.3943 0.3862
Average ± std 0.4419±0.0284 0.4545±0.0229 0.3855±0.0275 0.3945±0.0355

Table 1: Mean squared error (MSE), structural similarity index measure (SSIM), and per-
ceptual similarity metric (LPIPS) result between the synthesized and the ground truth CT
volumes
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Figure 9: Evaluation of image similarity between ground truth and synthesized CT volumes
under different experiment settings. (y-axis formatting: ts (training size) (with or without
structural consistency loss)

It is shown in Table 1 that the average structural similarity index measure (SSIM) values
under different runs and different settings ranges between 0.24 to 0.36, which is a relatively
low value, indicating the synthesized CT and the ground truth CT do not have similar
structural appearance. One reason is due to the missing femoral shaft information in our
CT volumes, resulting a great portion of the ground truth CT to be filled with empty values.

The results in Fig 9 shows that by increasing the number of training data from 1000 to
4000, the data yielded statistically marginal significant improvement (p < 0.1) according to
the paired t-test results. However, the implementation of structural consistency loss does
not seem to have a statistically meaningful impact on the final results (p > 0.1) even though
the mean SSIM seem to slightly increase.

6 Conclusions and Future work

It has been shown in both the training and the evaluation results that the inconsistent field of
view between the MR and CT volumes in our dataset is a problem that significantly impacts
the evaluation performance score. I did not notice the effect of this issue early enough to
make corresponding plans to mitigate the negative effect of this problem. I believe that
being able to access MR and CT datasets with more aligned FOV may help alleviate this
issue. And I will be able to make more meaningful comparisons between the ground-truth
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and the synthesized CT volumes. An additional approach would be to manually inspect and
crop each MR and CT volumes to ensure all images in both image modalities share similar
regional FOVs. However, the trained CT generator (GCT ) does seem to be properly trained
in Fig 7 neglecting the lower part of the image affected by the missing femoral shafts in
our CT volumes and has the potential to be used for further applications once the issue is
resolved.

In this project, I did not manage to implement the state-of-the-art cycleGAN-based net-
works for evaluation performance benchmarking in time. Some cycleGAN-based algorithms
that show great potentials include the work from Hiasa et al.[15] where gradient correla-
tion (GC) is used for cycleGAN loss calculation, and the structure-constrained cycleGAN
(sc-cycleGAN) developed by Yang et al.[17] where spectral normalization and self-attention
blocks are implemented to the cycleGAN network. I believe this is a crucial step to take as
it would allow meaningful comparisons between the similarity metric values collected from
our trained network and the best-performing networks, which is a crucial step while moving
on towards research publications.

7 Project Management Summary

7.1 Dependencies

The dependencies of this project are shown in Fig.10 below, with the plans and the estimated
resolving time. Alternative plans are proposed for each dependency to mitigate the risk of
original plans failing. All dependencies were addressed and resolved in the early stage of this
project.

Figure 10: Project dependencies

7.2 Project deliverables

The project deliverables are listed in Fig ?? below. Multiple project deliverables have been
significantly adjusted during the course of this project. The maximum deliverable that aims
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to peroform synthesized CT to X-ray registration has mostly been removed from this project
and are put in the future work of this project that I will continue be working on. Most
expected deliverables, including the MR-to-CT image translation algorithm as well as the
evaluation workflow have both been implemented and tested.

The code documentation of this work is fully accessible on Github (https://github.com/
AxDante/MR to synCT)

Figure 11: Project deliverables

7.3 Project Significance

• This project provides the MR-to-CT translation pipeline using cycleGAN network.
Including training and evaluation workflows.

• The flexible prepocessing package developed in this project is capable of reading input
data from different datasets and different imaging modalities

• This project implemented MIND-based structural loss function in cycleGAN, which
could be optimized in the future to further boost the network performance.

• The image similarity package developed for this project accepts nifty volumes as input
instead of only accepting 2D images, which would be a lot more useful for medical
imaging evaluation purposes.

7.4 Credits

Ping-Cheng Ku is in charge of the entire implementation of the project.
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7.5 Lessons learned

I have learned that keeping track of the training parameters that are being adjusted is
very crucial. Lots of training time were in fact wasted training using incorrect parameter
settings. I have also learned a lot while establishing the network evaluation workflow. Proper
evaluation methods and proper statistical analysis of the obtained results are crucial to create
strong and convincing publications.
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