
Vitals Extraction Code Documentation

Within this document, we list and describe the various implementations used in the extraction of
information from a drivers’ license using camera feed. As an overview, there are three main
steps in order to detect and extract information from identification from camera feed:

1. Detect the presence of a monitor. In order to detect the presence of a vitals monitor, a
YOLO Deep Learning Framework will be constructed and trained on the vitals monitor
dataset. YOLO was chosen due to its aptitude in processing large data at many frames
per second. Furthermore, according to the problem, it is only necessary to detect
whether one object is present in the frame, which YOLO excels at.

2. Detect the spatial orientation of a monitor and deform. To optimize optical character
recognition, the identification's image will be determined using Hough Transform Edge
Detection and deformed such that it appears head-on with no rotation.

3. Read and categorize information on the vitals monitor. Once a monitor is detected,
and after some preprocessing, Tesseract OCR in Python will be used to extract text from
the license. The location of numbers will then be used to sort the information into desired
categories, such as heart rate, blood pressure, and oxygen saturation.

Overall Performance Table:

Step Target Accuracy
(or Loss)

Recorded
Accuracy (or
Loss)

Target Speed Recorded
Speed

YOLOv3 96% 99% 8ms 30ms

Deformation <0.01 0.008 2ms 1ms

OCR and
Location Parsing

96% 93% 3ms 6ms

Overall 88.8% 89.28% 16ms 37ms



Flow Table of Files

YOLOv3
Description:

- The YOLOv3 architecture and pre-weights were pulled from
https://github.com/AlexeyAB/darknet. The implementation found in the files consists of a
python notebook to train the architecture in Google Colab (Train_YoloV3 .ipynb), and a
python file (monitor_yolo/yolo_object_detection.py) to run a network on a directory of
images. The weights of after 2000 epochs are found as yolov3_training.weights, and
the YOLOv3 configuration file is found as yolov3_testing.cfg.

- After training, the network will draw bounding boxes in input images around the detected
driver licenses.

Testing Results:
- Average Loss: ~0.03
- Average IOU: ~0.80-0.95
- Average Accuracy: ~0.99
- Decision Speed: ~30ms

- This decision speed is slow for video camera use, but can be run with separate
threads for smoothness. It may also be possible to evaluate every other frame

https://github.com/AlexeyAB/darknet


rather than each frame without loss of significant data if we wish to run on one
thread.

Deformation:
Description:

- The deformation algorithm takes the closely cropped image of the vitals monitor as an
input. The images are then color separated in order to isolate the blackness of the vitals
monitor that contains the vitals information. These new separated images are
preprocessed with Canny Edge Detection and run through Hough Transform to detect
the edges of the vitals monitor. The contours are then detected and filtered based off
certain characteristics that are indicative of the vital monitor’s contour:

- % Area: 75-100% of area
- # of Corners: 4-5 corners
- Aspect ratio: 0.3-0.5

Once the vital monitor’s contour is detected, its corners are obtained, and the monitor is
modeled as a rectangle. This rectangle is deformed to a head-on view. The main deform
python file is found in deform/deform.py.

Testing Protocol and Results:
- Using the manual data augmentation demonstrated in the Medical Device YOLOV3

Dataset Documentation, we created custom transforms (and recorded them as the
labeled truth), and applied them to a head-on view of the vitals monitor. These labeled
images were then fed into the deformation algorithm to calculate a transform. The Loss
was calculated as the sum of the squared difference of all entries between the true
transform and predicted transform: Loss = ∑n(true-predicted)2

- Result:
- Average Loss: ~0.008
- Decision Speed: ~1ms

OCR
Description:

- The OCR algorithm first preprocesses the Post-YOLO deformed image using the
OpenCV functions Binarize, Gaussian Blur, TopHat, BlackHat, and Threshold Local. It
then finds contours, which are then labeled as ‘Regions of Interest’. The python
Tesseract OCR is then run on the regions, and the text that is obtained is returned in a
list of text, paired with each text’s location. Using this relative location data, we
categorize what each number represents, as indicated in the figure below. ocrv/ocr.py
contains the main OCR algorithm. ocrv/stackchain contains a few helpful functions, and
ocrv/test contains a few representative test images.



Testing Protocol and Results:
- To create the testing dataset, images from the smart glasses camera were fed through

the YOLO and deformation algorithms. 200 ‘Regions of interest’ (ROI) from these
images were then labeled with their truth in a list. These same post-YOLO deform
images are then fed into the OCR algorithm, and the output is compared with truth. The
accuracy is determined as the number of ROIs correctly detected and read over the total
number of ROIs.

- Result:
- Average Accuracy: 93%
- Decision Speed: 6ms

- It may be best to have a hard limit on how quickly the OCR can be run.
Instead of running the check on every frame that contains an ID, perhaps
it should be run every three frames.


