Needle Localization In CT-Guided Tumor Ablation

Group 14:

Giang Hoang (giang@jhu.edu)

Mentors:

Dr. Sheng Xu (xus2@cc.nih.gov)

Dr. Michael Kassin (michael.kassin@nih.gov)

Dr. Bradford J. Wood (<u>bwood@cc.nih.gov</u>)

Project Statement:

This project aims to develop an algorithm to localize and identify the orientation of the ablation needle to predict the ablation zone during a minimally-invasive tumor ablation procedure.

Clinical Motivation and Prior Work

Tumor Ablation with RFA, MWA or Cryoablation:

- High rates of undertreated regions → Recurrence [Egger et al]
- Overtreatment → Complications [Egger et al]

Highly Dependent on Image Guidance

- Location of the ablation needles is crucial^[Wood et al]
- Several attempts to track location of the needle (Real Time
 Ultrasound^[Zhou et al], Intraoperative CT^[Wood et al], EM tracker^[Amalou et al])
- Multiple needles in one image

Multiple needle insertion depending on size of the tumor and the pre-planned approach

Project Goals

Localize and identify the orientation of the ablation needles in intraoperative CT images to support needle insertion accuracy

Generate and superimpose predicted ablation zone on CT images for visualization

Technical Approach

Preprocessing

- Normalization → Standardization
- Threshold → Remove soft tissue
- Morphological Opening and Closing → Remove artifacts and weak connections

Connected Component Analysis

- Volume Filtering → Remove noise and large bone fragments
- Shape Filtering → Obtain only elongated image
- Location Filtering → Remove object far from ROI.

Feature Extraction

- 3D Hough Transform → Separate multiple needles
- PCA → Needle Orientation
- Project → Needle Tip Location

Ellipsoid Ablation Zone Overlay

Results

Evaluation

Performance (n = 8)

- Needle Tip Localization: 0.82 ± 0.59 mm
- Needle Orientation: 0.74° ± 0.19°
- Runtime: Less than 30 seconds per image

Feature Extraction Accuracy

MWA Ablation Zone Evaluation With

<u>Tissue-mimicking Thermochromic Phantom</u>

Preliminary Integration Into Ablation Workflow

Discussion and Future Directions

Performance

- High accuracy
- Relatively good runtime

Limitations

- Occasional failures with multiple intertwining needles
- Dependent on hyperparameters
- Ellipsoid model inherently not perfect

Future Work

- Model optimization with a large dataset of patient images → generalizability
- Evaluate ablation zone approximation accuracy with CT-imagable thermochromic phantoms
- Incorporate tumor segmentation algorithms
- Extract more clinically meaningful information
- Improve visualization and incorporate user interface

Acknowledgement

Special appreciation to the project mentors and the course advisors for their help and support:

Dr. Sheng Xu (xus2@cc.nih.gov)

Dr. Michael Kassin (michael.kassin@nih.gov)

Dr. Bradford J. Wood (bwood@cc.nih.gov)

The NIH Center for Interventional Oncology, Interventional Radiology

Dr. Russell Taylor (rht@jhu.edu)

Max Zhaoshuo Li (zli122@jhu.edu)

Johns Hopkins Whiting School of Engineering

References

Amalou, H., Wood, B.J. Electromagnetic tracking navigation to guide radiofrequency ablation of a lung tumor. *J Bronchology Interv Pulmonol*. 2012;19(4):323-327. doi:10.1097/LBR.0b013e31827157c9

Bachiller-Burgos, Pilar et al. "A Spiking Neural Model of HT3D for Corner Detection." *Frontiers in computational neuroscience* vol. 12 37. 1 Jun. 2018, doi:10.3389/fncom.2018.00037

Egger J, Busse H, Brandmaier P, et al. Interactive Volumetry Of Liver Ablation Zones. *Sci Rep.* 2015;5:15373. Published 2015 Oct 20. doi:10.1038/srep15373

Paul (2021). 3D Finite Element Analysis with MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/50482-3d-finite-element-analysis-with-matlab), MATLAB Central File Exchange. Retrieved February 23, 2021.

Wood, B.J. *et al.* Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. *J Vasc Interv Radiol*. 2007;18(1 Pt 1):9-24. doi:10.1016/j.jvir.2006.10.013

Zhang, J., Chauhan, S. Real-time computation of bio-heat transfer in the fast explicit dynamics finite element algorithm (FED-FEM) framework, Numerical Heat Transfer, Part B: Fundamentals. 2019; 75:4, 217-238, DOI: 10.1080/10407790.2019.1627812

Zhou, H. *et al.* "Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform", in Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling, 2008, vol. 6918. doi:10.1117/12.770077.

Thank you