#The code below is intended to find the homography matrix after feature matching
#The code is adapted from the image alignment tutorial
#The website is as follows: https://www.pyimagesearch.com/2020/08/31/image—alignment-and-registration-with-opencv/

#Import libraries
import numpy as np
import imutils
import cv2

#A helper function that finds the homography matrix
#Input: the image/camera input and the template/desired position
#0utput: the homography matrix between the two images

def homography_matrix(image, template, maxFeatures=500, keepPercent=0.2,debug=False):

convert both the input image and template to grayscale
imageGray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
templateGray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)

use ORB to detect keypoints and extract (binary) local invariant features
orb = cv2.0RB_create(maxFeatures)
(kpsA, descsA) = orb.detectAndCompute(imageGray, None)
(kpsB, descsB) = orb.detectAndCompute(templateGray, None)

match the features
method = cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING
matcher = cv2.DescriptorMatcher_create(method)
matches = matcher.match(descsA, descsB, None)

sort the matches by their distance
the smaller the distance, the "more similar" the features are)

matches = sorted(matches, key=lambda x:x.distance)

keep only the top matches

keep = int(len(matches) * keepPercent)
matches = matches[:keep]

allocate memory for the keypoints (x, y)-coordinates from the
top matches —— we'll use these coordinates to compute the homography matrix

np.zeros((len(matches), 2), dtype="float")

ptsA
np.zeros((len(matches), 2), dtype="float")

ptsB =
loop over the top matches
for (i, m) in enumerate(matches):

indicate that the two keypoints in the respective images
map to each other

ptsA[il
ptsB[il

kpsA[m.queryIdx].pt
kpsB[m.trainIdx].pt

#computes the homography matrix between two sets of matched points

(H, mask) = cv2.findHomography(ptsA, ptsB, method=cv2.RANSAC)
return H

