Calibration

Calibrate (vt) : 1. to determine the caliber of (as a thermometer tube); 2. to determine, rectify, or mark the gradations of (as a thermometer tube); 3. to standardize (as a measuring instrument) by determining the deviation from a standard so as to ascertain the proper correction factors; 4. ADJUST, TUNE

Calibration

Calibration

Basic Techniques

- Parameter Estimation
- Mapping the space

Parameter Estimation

- Compare observed system performance to reference standard ("ground truth")
- Compute parameters of mathematical model that minimizes residual error.

Pointing device calibration

Parameter estimation

Typically, try to find the minimum of a convex function such as

$$
\overrightarrow{\mathbf{q}}^{*}=\underset{\overrightarrow{\mathbf{q}}}{\operatorname{argmin}} E\left(\left\{\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right), \overrightarrow{\mathbf{p}}_{k}\right\}\right)
$$

for a function $\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}} ; \overrightarrow{\mathbf{q}})$ and observations $\overrightarrow{\mathbf{p}}_{k}=\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ;\right.$?)
There are many methods for solving this problem. You can consult any good numerical methods text, such as Numerical Methods in C / C++ / xyz.

Most often $E\left(\left\{\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right), \overrightarrow{\mathbf{p}}_{k}\right\}\right)$ is a sum of squares

$$
E\left(\left\{\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right), \overrightarrow{\mathbf{p}}_{k}\right\}\right)=\sum_{k}\left\|\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right)-\overrightarrow{\mathbf{p}}_{k}\right\|^{2}
$$

However, other functions are also used, e.g.

$$
E\left(\left\{\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right), \overrightarrow{\mathbf{p}}_{k}\right\}\right)=\sum_{k}\left\|\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right)-\overrightarrow{\mathbf{p}}_{k}\right\|_{L 1}
$$

Linear Parameter Estimation

$$
\mathbf{p}_{\text {nom }}=\mathbf{f}(\mathbf{q}) \quad \text { where } \mathbf{q}=\left[q_{1}, \ldots q_{n}\right]^{\top} \text { are parameters }
$$

$$
\mathbf{p}^{*}=\mathbf{f}(\mathbf{q}+\Delta \mathbf{q})
$$

$$
\approx \mathbf{f (q)}+\left[\begin{array}{ccc}
\ddots & \vdots & \\
\cdots & \frac{\partial f_{i}}{\partial q_{j}}(\mathbf{q}) & \cdots \\
& \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\Delta q_{1} \\
\vdots \\
\Delta q_{n}
\end{array}\right]
$$

$$
\equiv \mathbf{f}(\mathbf{q})+J_{\mathbf{f}}(\mathbf{q}) \Delta \mathbf{q}
$$

Parameter estimation: least squares adjustment

Generally, these are iterative methods. One typical example is:

$$
\overrightarrow{\mathbf{q}}=\operatorname{argmin} \sum_{k}\left(\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{x}}_{k} ; \overrightarrow{\mathbf{q}}\right)-\overrightarrow{\mathbf{p}}_{k}\right)^{2}
$$

Step 0 Make an initial guess $\overrightarrow{\mathbf{q}}^{(0)}$ of the parameter vector $\overrightarrow{\mathbf{q}}$. Set $i \leftarrow 0$.
Step 1 Solve the least squares problem

$$
\left[\begin{array}{c}
\vdots \\
J_{\mathbf{f}}\left(\overrightarrow{\mathbf{q}}^{(i)}\right) \\
\vdots
\end{array}\right] \Delta \overrightarrow{\mathbf{q}}^{(i+1)} \cong\left[\begin{array}{c}
\vdots \\
\overrightarrow{\mathbf{p}}_{k}^{*}-\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{q}}^{(i)}\right) \\
\vdots
\end{array}\right] \text { to find } \Delta \overrightarrow{\mathbf{q}}^{(i+1)}
$$

Step $2 \quad \overrightarrow{\mathbf{q}}^{(i+1)} \leftarrow \overrightarrow{\mathbf{q}}^{(i)}+\Delta \overrightarrow{\mathbf{q}}^{(i+1)}$; evaluate $\left\{\overrightarrow{\mathbf{e}}_{k} \leftarrow \overrightarrow{\mathbf{p}}_{k}^{*}-\overrightarrow{\mathbf{f}}\left(\overrightarrow{\mathbf{q}}^{(i+1)}\right)\right\} ; \zeta^{(i+1)} \leftarrow \sum_{k} \overrightarrow{\mathbf{e}}_{k} \cdot \overrightarrow{\mathbf{e}}_{k}$
Step 3 If $\zeta^{(i+1)}$ is small enough, or otherwise converged, then stop. Else set $i \leftarrow i+1$ and go back to Step 1.

Linear Least Squares

- Most commonly used method for parameter estimation
- Many numerical libraries
- See the web site
- Here is a quick review

Example: 2 link robot calibration

Example: 2 link robot calibration

Example: 2 link robot calibration

$$
\begin{aligned}
& \mathbf{p}=\left[\begin{array}{c}
a_{1} \sin \theta_{1}+a_{2} \sin \left(\theta_{12}\right) \\
0 \\
a_{1} \cos \theta_{1}+a_{2} \cos \left(\theta_{12}\right)
\end{array}\right] \quad \text { where } \theta_{12}=\theta_{1}+\theta_{2} \\
& \mathbf{p}^{*}=\left[\begin{array}{c}
\left(a_{1}+\Delta a_{1}\right) \sin \left(\theta_{1}+\Delta \theta_{1}\right)+\left(a_{2}+\Delta a_{2}\right) \sin \left(\theta_{12}+\Delta \theta_{1}+\Delta \theta_{2}\right) \\
0 \\
\left(a_{1}+\Delta a_{1} \cos \left(\theta_{1}+\Delta \theta_{1}\right)+\left(a_{2}+\Delta a_{2}\right) \cos \left(\theta_{12}+\Delta \theta_{1}+\Delta \theta_{2}\right)\right.
\end{array}\right]
\end{aligned}
$$

Example: 2 link robot calibration

$\mathbf{p}_{k}=\mathbf{f}\left(\mathbf{q}_{k}\right)=\mathbf{f}\left(a_{1}, a_{2}, \theta_{1}, \theta_{2}\right)=\left[\begin{array}{c}a_{1} \sin \theta_{1, k}+a_{2} \sin \left(\theta_{12, k}\right) \\ 0 \\ a_{1} \cos \theta_{1, k}+a_{2} \cos \left(\theta_{12, k}\right)\end{array}\right] \quad$ where $\theta_{12}=\theta_{1}+\theta_{2}$
so we solve the least squares problem

$$
\left[\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial \mathbf{f}}{\partial a_{1}}\left(\mathbf{q}_{k}\right) & \frac{\partial \mathbf{f}}{\partial a_{2}}\left(\mathbf{q}_{k}\right) & \frac{\partial \mathbf{f}}{\partial \theta_{1}}\left(\mathbf{q}_{k}\right) & \frac{\partial \mathbf{f}}{\partial \theta_{2}}\left(\mathbf{q}_{k}\right) \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{a}_{1} \\
\Delta a_{2} \\
\Delta \theta_{1} \\
\Delta \theta_{2}
\end{array}\right] \approx\left[\begin{array}{c}
\vdots \\
\vdots \\
\mathbf{p}_{k}^{*}-\left[\begin{array}{c}
a_{1} \operatorname{Rot}\left(\mathbf{y}, \theta_{1, k}\right) \\
+a_{2} R o t\left(\mathbf{y}, \theta_{1, k}\right)
\end{array}\right] \\
\vdots
\end{array}\right]
$$

Example: 2 link robot calibration

Here

$$
J_{\mathbf{f}}\left(\mathbf{q}_{k}\right)=\left[\begin{array}{cccc}
\sin \theta_{1, k} & \sin \theta_{12, k} & a_{1}\left(\cos \theta_{1, k}+\cos \theta_{12, k}\right) & a_{2} \cos \theta_{12, k} \\
0 & 0 & 0 & 0 \\
\cos \theta_{1, k} & \cos \theta_{12, k} & -a_{1}\left(\sin \theta_{1, k}+\sin \theta_{12, k}\right) & -a_{2} \cos \theta_{12, k}
\end{array}\right]
$$

so

$$
\left[\begin{array}{cccc}
& \vdots & \\
\sin \theta_{1, k} & \sin \theta_{12, k} & a_{1}\left(\cos \theta_{1, k}+\cos \theta_{12, k}\right) & a_{2} \cos \theta_{12, k} \\
\cos \theta_{1, k} & \cos \theta_{12, k} & -a_{1}\left(\sin \theta_{1, k}+\sin \theta_{12, k}\right) & -a_{2} \cos \theta_{12, k} \\
\vdots & \vdots \\
\Delta a_{1} \\
\Delta \theta_{2}
\end{array}\right] \approx\left[\begin{array}{c}
\Delta a_{1} \\
\Delta a_{2} \\
x_{k}^{*}-a_{1} \sin \theta_{1, k}+a_{2} \sin \left(\theta_{12, k}\right) \\
z_{k}^{*}-a_{1} \cos \theta_{1, k}+a_{2} \cos \left(\theta_{12, k}\right) \\
\vdots
\end{array}\right]
$$

Example: Robodoc Wrist Calibration

- Basic robot had very accurate calibration
- Custom wrist was less accurate
- Crucial goal was to determine position of cutter tip

Kinematic Model

$$
\begin{aligned}
& \mathbf{p}_{\text {tool }}=\mathbf{p}_{\text {wrist }}+\mathbf{R}\left(\mathbf{z}, \theta_{4}+\Delta \theta_{4}\right) \bullet\left(\alpha \mathbf{x}+\mathbf{v}_{\text {distal }}\right) \\
& \mathbf{v}_{\text {distal }}=\mathbf{R}(\mathbf{x}, \beta) \bullet\left[\mathbf{R}\left(\mathbf{y}, \theta_{5}+\Delta \theta_{5}\right)\left(\mathbf{v}_{c}+\Delta \mathbf{v}_{c}\right)\right]
\end{aligned}
$$

Linearization

$$
\mathbf{p}_{\text {post }} \approx \mathbf{p}_{\text {wrist }}+\left[\mathbf{R}_{4} \mathbf{R}_{5}\left(\mathbf{v}_{c}+\Delta \mathbf{v}_{c}\right)\right]+\ldots \ldots
$$

Example: Undistorted fluoroscope calibration

Calibration if no distortion (version 1)

Assume no distortion. For the moment also assume that you have N point calibration features (e.g., small steel balls) at known positions $\left\{\mathbf{a}_{0}, \cdots, \mathbf{a}_{N-1}\right\}$ relative to the detector. Assume further that the points create images at corresponding points $\left\{\mathbf{d}_{0}, \cdots, \mathbf{d}_{N-1}\right\}$ on the detector. Estimate the position \mathbf{s} of the x-ray source relative to the detector

Approach

Projection of a point feature

$$
\begin{aligned}
& \mathbf{s}=\lambda(\mathbf{a}-\mathbf{d})+\mathbf{d} \\
& \lambda=\frac{(a-d) \cdot(\mathbf{s}-\mathbf{d})}{(a-d) \cdot(a-d)} \\
& \mathbf{d}=\mu(\mathbf{a}-\mathbf{s})+\mathbf{s} \\
& \mu=\frac{(a-s) \cdot(\mathbf{d}-\mathbf{s})}{(a-s) \cdot(\mathbf{a}-\mathbf{s})}
\end{aligned}
$$

Approach
Solve least squares problem

To simplify this situation, define

$$
\mathbf{F}_{h w, k}=\mathbf{F}_{h, k}^{-1} \mathbf{F}_{w r i s t, k}
$$

This gives

$$
\mathbf{F}_{n c, k}=\mathbf{F}_{n w, k} \mathbf{F}_{w c}=\mathbf{F}_{r o b} \mathbf{F}_{r c, k}
$$

Solving "AX = XB" problems
 where X is a rigid transformation

Given known frame transformations $\left\{F_{A, k}, F_{B, k}\right\}$ we want to find a best estimate $\mathbf{F}_{x}=\left[\mathbf{R}_{x}, \overrightarrow{\mathbf{p}}_{x}\right]$ such that $\mathbf{F}_{A, k} \bullet \mathbf{F}_{X} \approx \mathbf{F}_{X} \bullet \mathbf{F}_{B, k}$.
This is equivalent to

$$
\begin{gathered}
\mathbf{R}_{A, k} \mathbf{R}_{x} \approx \mathbf{R}_{x} \mathbf{R}_{B, k} \\
\mathbf{R}_{A, k} \overrightarrow{\mathbf{p}}_{x}+\overrightarrow{\mathbf{p}}_{A, k} \approx \mathbf{R}_{x} \overrightarrow{\mathbf{p}}_{B, k}+\overrightarrow{\mathbf{p}}_{x}
\end{gathered}
$$

We will solve first for the rotation part and then for the translation part.

Rotation Part (less good way)

Note: The quaternion method (discussed next) is better
We want to solve

$$
\mathbf{R}_{A, k} \mathbf{R}_{x} \approx \mathbf{R}_{x} \mathbf{R}_{B, k}
$$

Using the notation

$$
\mathbf{R}_{A}=\operatorname{Rot}(\vec{\alpha})=\operatorname{Rot}\left(\frac{\vec{\alpha}}{\|\vec{\alpha}\|}\|\vec{\alpha}\|\right)=\operatorname{Rot}\left(\overrightarrow{\mathbf{n}}_{\mathrm{A}}, \theta_{A}\right)
$$

etc., we recall that

$$
\mathbf{R}_{A} \mathbf{R}_{X}=\operatorname{Rot}\left(\overrightarrow{\mathbf{n}}_{A}, \theta_{A}\right) \mathbf{R}_{x}=\mathbf{R}_{X} \operatorname{Rot}\left(\mathbf{R}_{X}^{-1} \overrightarrow{\mathbf{n}}_{A}, \theta_{A}\right)
$$

So

$$
\mathbf{R}_{x} \operatorname{Rot}\left(\mathbf{R}_{x}^{-1} \overrightarrow{\mathbf{n}}_{A}, \theta_{A}\right)=\mathbf{R}_{x} \operatorname{Rot}\left(\overrightarrow{\mathbf{n}}_{B}, \theta_{B}\right)
$$

Rotation Part (less good way), continued

From previous slide

$$
\mathbf{R}_{x} \operatorname{Rot}\left(\mathbf{R}_{x}{ }^{-1} \overrightarrow{\mathbf{n}}_{A}, \theta_{A}\right)=\mathbf{R}_{x} \operatorname{Rot}\left(\overrightarrow{\mathbf{n}}_{B}, \theta_{B}\right)
$$

Multiplying both sides by by $\mathbf{R}_{x}{ }^{-1}$ gives

$$
\operatorname{Rot}\left(\mathbf{R}_{X}{ }^{-1} \overrightarrow{\mathbf{n}}_{A}, \theta_{A}\right)=\operatorname{Rot}\left(\overrightarrow{\mathbf{n}}_{B}, \theta_{B}\right)
$$

This can be expressed as

$$
\mathbf{R}_{x}^{-1} \vec{\alpha}=\vec{\beta}
$$

where $\vec{\alpha}=\theta_{A} \overrightarrow{\mathbf{n}}_{A}$ and $\vec{\beta}=\theta_{B} \overrightarrow{\mathbf{n}}_{B}$. Rearranging and inserting subscripts gives a system

$$
\mathbf{R}_{x} \vec{\beta}_{k}=\vec{\alpha}_{k}
$$

which can be solved for \mathbf{R}_{x} by standard rigid rotation estimation methods .

Rotation Part (with quaternions)

Let $\mathbf{q}_{x}=s_{x}+\overrightarrow{\mathbf{v}}_{x}$ be the unit quaternion corresponding to \mathbf{R}_{x}, with similar definitions for \mathbf{q}_{A} and \mathbf{q}_{B}. Then we have for $\mathbf{R}_{A} \mathbf{R}_{x}=\mathbf{R}_{x} \mathbf{R}_{B}$

$$
\mathbf{q}_{A} \mathbf{q}_{X}=\mathbf{q}_{X} \mathbf{q}_{B}
$$

Expanding the scalar and vector parts gives

$$
\begin{gathered}
s_{A} s_{X}-\overrightarrow{\mathbf{v}}_{A} \bullet \overrightarrow{\mathbf{v}}_{X}=s_{X} s_{B}-\overrightarrow{\mathbf{v}}_{X} \bullet \overrightarrow{\mathbf{v}}_{B} \\
s_{A} \overrightarrow{\mathbf{v}}_{X}+s_{X} \overrightarrow{\mathbf{v}}_{A}+\overrightarrow{\mathbf{v}}_{A} \times \overrightarrow{\mathbf{v}}_{X}=s_{X} \overrightarrow{\mathbf{v}}_{B}+s_{B} \overrightarrow{\mathbf{v}}_{X}+\overrightarrow{\mathbf{v}}_{X} \times \overrightarrow{\mathbf{v}}_{B}
\end{gathered}
$$

Rearranging ...

$$
\begin{array}{r}
\left(s_{A}-s_{B}\right) s_{X}-\left(\overrightarrow{\mathbf{v}}_{A}-\overrightarrow{\mathbf{v}}_{B}\right) \cdot \overrightarrow{\mathbf{v}}_{x}=0 \\
\left(\overrightarrow{\mathbf{v}}_{A}-\overrightarrow{\mathbf{v}}_{B}\right) s_{X}+\left(s_{A}-s_{B}\right) \overrightarrow{\mathbf{v}}_{X}+\left(\overrightarrow{\mathbf{v}}_{A}+\overrightarrow{\mathbf{v}}_{B}\right) \times \overrightarrow{\mathbf{v}}_{X}=\overrightarrow{\mathbf{0}}_{3}
\end{array}
$$

Rotation Part (with quaternions, con'd)

Expressing this as a matrix equation

$$
\left[\frac { (s _ { A } - s _ { B }) } { [(\vec { \mathbf { v } } _ { A } - \vec { \mathbf { v } } _ { B }) ^ { T } } [] \left[\frac { s _ { X } } { \vec { \mathbf { v } } _ { A } - \vec { \mathbf { v } } _ { B }) } \left[\left(s_{A}-s_{B}\right) \mathbf{l}_{3}+s k\left(\left(\overrightarrow{\mathbf{v}}_{A}+\overrightarrow{\mathbf{v}}_{B}\right)\right]=\left[\begin{array}{c}
0 \\
\overrightarrow{\mathbf{0}}_{3}
\end{array}\right]\right.\right.\right.
$$

If we now express the quaternion \mathbf{q}_{x} as a 4-vector $\overrightarrow{\mathbf{q}}_{x}=\left[s_{x}, \overrightarrow{\mathbf{n}}_{x}\right]^{\top}$, we can express the $A X=A B$ rotation problem as the system

$$
\begin{aligned}
\mathbf{M}\left(\mathbf{q}_{A}, \mathbf{q}_{B}\right) \overrightarrow{\mathbf{q}}_{X} & =\overrightarrow{\mathbf{0}}_{4} \\
\left\|\overrightarrow{\mathbf{q}}_{x}\right\| & =1
\end{aligned}
$$

Rotation Part (with quaternions, con'd)

In general, we have many observations, and we want to solve the problem in a least squares sense:
$\min \left\|\mathbf{M} \overrightarrow{\mathbf{q}}_{x}\right\|$ subject to $\left\|\overrightarrow{\mathbf{q}}_{x}\right\|=1$
where
$\mathbf{M}=\left[\begin{array}{c}\mathbf{M}\left(\mathbf{q}_{A, 1}, \mathbf{q}_{B, 1}\right) \\ \vdots \\ \mathbf{M}\left(\mathbf{q}_{A, n}, \mathbf{q}_{B, n}\right)\end{array}\right]$ and n is the number of observations
Taking the singular value decomposition of $\mathbf{M}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ reduces this to the easier problem
$\min \left\|\mathbf{U} \Sigma \mathbf{V}^{\top} \overrightarrow{\mathbf{q}}_{X}\right\|=\|\mathbf{U}(\Sigma \overrightarrow{\mathbf{y}})\|=\|\Sigma \Sigma \boldsymbol{\mathbf { y }}\|$ subject to $\|\overrightarrow{\mathbf{y}}\|=\left\|\mathbf{V}^{\top} \overrightarrow{\mathbf{q}}_{X}\right\|=\left\|\overrightarrow{\mathbf{q}}_{X}\right\|=1$
600. 445 Copyright © R. H. Taylor 1999-2008

Rotation Part (with quaternions, con'd)

This problem is just

$$
\min \|\Sigma \overrightarrow{\mathbf{y}}\|=\left\|\left[\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 \\
0 & 0 & 0 & \sigma_{4}
\end{array}\right] \overrightarrow{\mathbf{y}}\right\| \text { subject to }\|\overrightarrow{\mathbf{y}}\|=1
$$

where σ_{i} are the singular values. Recall that SVD routines return the $\sigma_{i} \geq 0$ and sorted in decreasing magnitude. So σ_{4} is the smallest singular value and the value of $\overrightarrow{\mathbf{y}}$ with $\|\overrightarrow{\mathbf{y}}\|=1$ that minimizes $\|\Sigma \overrightarrow{\mathbf{y}}\|$ is $\overrightarrow{\mathbf{y}}=[0,0,0,1]^{T}$. The corresponding value of $\overrightarrow{\mathbf{q}}_{x}$ is given by $\overrightarrow{\mathbf{q}}_{x}=\mathbf{V} \overrightarrow{\mathbf{y}}=\mathbf{V}_{4}$. Where \mathbf{V}_{4} is the 4 th column of \mathbf{V}.

Displacement part

The displacement part is given by

$$
\mathbf{R}_{A, k} \overrightarrow{\mathbf{p}}_{x}+\overrightarrow{\mathbf{p}}_{A, k} \approx \mathbf{R}_{x} \overrightarrow{\mathbf{p}}_{B, k}+\overrightarrow{\mathbf{p}}_{x}
$$

Once we have solved for \mathbf{R}_{x}, we can rearrange the system above as

$$
\left(\mathbf{R}_{A, k}-\mathbf{I}\right) \overrightarrow{\mathbf{p}}_{x} \approx \mathbf{R}_{x} \overrightarrow{\mathbf{p}}_{B, k}-\overrightarrow{\mathbf{p}}_{A, k}
$$

which we can solve by least squares

Calibrating an Ultrasound Probe

Boctor E, et. al., "A Novel Closed Form Solution For Ultrasound Calibration", ISBI 2004.
600. 445 Copyright © R. H. Taylor 1999-2008

Mapping the space

- Compare observed system performance to reference standard ("ground truth")
- Interpolate residual errors

Example: Fluoroscope calibration

Projection of a point feature with distortion

$$
\begin{aligned}
& s=\lambda(a-d)+d \\
& \lambda=\frac{(a-d) \cdot(s-d)}{(a-d) \cdot(a-d)} \\
& u=f(d, \bar{v})
\end{aligned}
$$

C-arm Calibration: Motivation

- Rectify (dewarp) geometric distortions in acquired images.
- Determine the geometry of conebeam projection
- Compute calibration for each acquired x ray

Prior studies: Boone et al., 1991; Fahrig et al., 1997 Yaniv et al., 1998; Yao, 2002; Daly et al., 2008; ..

C-arm Calibration: Instruments, Methods and Results

Initial x-ray of phantom

Rectified phantom image

Vertical grid lines detected

Diamond patterns detected \rightarrow cone-beam parameters
00. 445 Copyright © R. H. Taylor 1999-2008

Calibration phantom mounted on image intensifier
Phantom Design: Iulian lordachita, Ofri Sadowsky Russ Taylor

Sadowsky, 2008

Interpolation

- Ubiquitous throughout CIS research and applications
- Many techniques and methods
- Here are a few more
 notes

Experimental Setup

Intrinsic Image Calibration

- Intrinsic imaging parameters (Schreiner et. al.)
- Image Warping (Checkerboard Based Method)

Top View

Side View

Step 0: Acquire Image

Step 1: Find groove noints
-Find image points corresponding to the centerline of each vertical and horizontal groov

Step 2: Fit 5'th order Bernstein Polynomial Curves

- Fit least square smooth curve to each vertical and horizontal groove
- 5'th order Bernstein Polynomial
$B\left(a_{0}, \ldots, a_{5} ; v\right)=\sum_{k=0}^{5} a_{k}\binom{5}{k}(1-v)^{5-k} v^{k}$

Step 3: Dewarp

- Employ a two pass scan line algorithm to dewarp the image

Advantages

- Fast
- < 2 seconds on Pentium II 400
- Robust
- works well even with overlaid objects
- Sub-pixel Accuracy
- mean error 0.12 mm on the central area
- Does not completely obscure the image
- trades off image contrast depth for image area

Spheres i, j :
physical location in plate $=\overrightarrow{\mathbf{b}}_{i j}$
Image location $=\overrightarrow{\mathbf{u}}_{i j}$

What are the physical
coordinates in the plate associated with image coordinates $\overrightarrow{\mathbf{u}}_{t}$?

Given $\mathbf{q}=$ a point in image coordinates, determine the points
$\mathbf{f}_{1}^{*}=$ the point on grid 1 corresponding to \mathbf{q}
$\mathbf{f}_{2}^{*}=$ the point on grid 2 corresponding to \mathbf{q} The desired ray in space passes through \mathbf{f}_{1}^{*} and \mathbf{f}_{2}^{*}.

Two plane calibration

- Again, the essential problem is to determine the coordinates in the two planes at which the source-to-detector ray passes through the plane.
- Many methods for this. E.g.,
- Find the four surrounding bead locations on each plane and use bilinear interpolation
- Fit a general spline model for the distortion on each plane and then directly interpolate

Spheres i, j :
physical location in plate $=\overrightarrow{\mathbf{b}}_{i j}$
Image location $=\overrightarrow{\mathbf{u}}_{i j}$

What are the physical coordinates in the plate associated with image coordinates $\overrightarrow{\mathbf{u}}_{t}$?
$[\lambda, \mu] \leftarrow \operatorname{solve}\left(\overrightarrow{\mathbf{u}}_{t}=\operatorname{bilinear}\left(\lambda, \mu,\left\{\overrightarrow{\mathbf{u}}_{i j}\right\}\right)\right)$
Photos: Sofamor Danek
$\overrightarrow{\mathbf{b}}_{t} \leftarrow \operatorname{bilinear}\left(\lambda, \mu,\left\{\overrightarrow{\mathbf{b}}_{i j}\right\}\right)$

Photos: Sofamor Danek

Spheres i, j :
physical location in other plate $=\overrightarrow{\mathbf{c}}_{i j}$
Image location $=\overrightarrow{\mathbf{u}}_{i j}^{(c)}$

What are the physical coordinates $\overrightarrow{\mathbf{c}}_{t}$ in the other plate associated with image coordinates $\overrightarrow{\mathbf{u}}_{t}$?
$[\lambda, \mu] \leftarrow \operatorname{solve}\left(\overrightarrow{\mathbf{u}}_{t}=\operatorname{bilinear}\left(\lambda, \mu,\left\{\overrightarrow{\mathbf{u}}_{i j}^{\text {(co }}\right\}\right)\right)$
$\overrightarrow{\mathbf{c}}_{t} \leftarrow \operatorname{bilinear}\left(\lambda, \mu,\left\{\overrightarrow{\mathbf{c}}_{i j}\right\}\right)$

Photos: Sofamor Danek
So the points in space on the line from the x-ray source to detector corresponding to the image coordinates $\overrightarrow{\mathbf{u}}_{t}$ will be given by

