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Surgical Assistant Systems 

•  Situation assessment 
•  Task strategy & decisions 
•  Sensory-motor coordination 

Augmentation 
System 

• Sensor processing 
• Model interpretation 
• Display 

atlases 

• Manipulation 
enhancement 

• Online references & 
decision support 

• Cooperative control 
and “macros” 

atlases 

libraries 
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Problem: specifying motion for a [medical] robot 
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Background: Jacobean Robot Motion Control 

    

Let F=[R,

p] be the current pose of a robot end effector and 


q = [q1,,qN ] be the current joint position values corresponding
to F.  I.e., F=Kins(


q), where Kins() is a function  computing

the "forward kinematics" of the robot.  

   Joint positions 

q      Pose F = kins


q( )

     

Pose F

q+Δ


q( ) = kins


q+Δ


q( )

ΔFiF = kins

q+Δ


q( )

ΔF = kins

q+Δ


q( )kins


q( )−1
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Background: Jacobean Robot Motion Control 

    

Let F=[R,

p] be the current pose of a robot end effector and 


q = [q1,,qN ] be the current joint position values corresponding
to F.  I.e., F=Kins(


q), where Kins() is a function  computing

the "forward kinematics" of the robot.  Let ΔF •F=Kins(

q+ Δ


q)

    

For small Δ

q, we can write the following expression for ΔF = [Rot(

α),
ε ]

ΔF = Kins(

q+ Δ


q)Kins(


q)−1

which we typically linearize as

Δ

x =

α
ε

⎡

⎣
⎢

⎤

⎦
⎥ ≈ JKins (


q)Δ

q

    

Note that here we are computing ΔF in the base frame of the robot.
If we want to compute ΔF in the end effector frame, so that
F • ΔF=Kins(


q+ Δ


q), then we will get a slightly different expression

for JKins (

q), though the flavor will be the same

   Δ

q    Δ


x
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Background: Jacobean Robot Motion Control 

   Joint positions 
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Position 
control 

Motor 
currents 

Sensor  
values 

Surgeon input 
Plan information 
Anatomic models 
Safety constraints 

   

q, q

One implementation 

Motion  
level 

control 

    

qdes =


q+ J−1(


q)Δ

xdes

Task level  
control 

   Δ

xdes
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qdes
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& motion limits 

    

Kins(), JKins ()

qL ≤


q ≤

qu



6 

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
12  600.445 Fall 2012 

 Copyright © R. H. Taylor 

Steady Hand Robot 
Hands on compliance control 

Handle 
Force Kv 

Joint 
Velocities 

     



xdes = Kv


fh

qcmd = Jkins
−1 

xdes

[1]  R. H. Taylor, J. Funda, B. Eldgridge, S. Gomory, K. Gruben, D. LaRose, M. Talamini, L. Kavoussi, and J. anderson, "Telerobotic assistant for 
laparoscopic surgery.", IEEE Eng Med Biol, vol. 14- 3, pp. 279-288, 1995 

[2]  R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, "A Steady-Hand Robotic 
System for Microsurgical Augmentation", International Journal of Robotics Research, vol. 18- 12, pp. 1201-1210, 1999   
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Steady Hand Robot 
Hands on compliance control with force scaling 

Handle 
Force Kv 

Joint 
Velocities 

      



xdes = Kv (


fh −γ


ftip )

qcmd = Jkins
−1 

xdes

Tool tip 
Force 

[1]  D. Rothbaum, J. Roy, G. Hager, R. Taylor, and L. Whitcomb, "Task Performance in stapedotomy: Comparison between surgeons of different experience 
levels", Otolaryngology -- Head and Neck Surgery, vol. 128- 1, pp. 71-77, January 2003    

[2] J. Roy and L. L. Whitcomb, "Adaptive Force Control of Position Controlled Robots: Theory and Experiment", IEEE Transactions on Robotics and 
Automation, vol. 18- 2, pp. 121-137, April 2002  
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Example: Fenestratration of Stapes Footplate 
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Example: Fenestratration of Stapes Footplate 
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Virtual Fixtures 

•  Bridge the gap between autonomous robots and 
direct human control. 

•  Assist the human operator in safer, faster, and 
more accurate task completion. 

•  Broadly Categorized 

•  Guidance VF 

•  Forbidden Region VF 

•  Different implementation 

•  Tele-manipulation 

•  Cooperative Control 
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Background: Virtual Fixtures 
•  First proposed for complex telerobotic tasks, but draw upon rich prior research in robot 

assembly and other manufacturing automation applications 

•  Many authors, e.g.,  
–  L. B. Rosenberg, "Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation," Proc. IEEE Virtual Reality 

International Symposium, 1993."
–  B. Davies, S. Harris, M. Jakopec, K. Fan, and J. cobb, "Intraoperative application of a robotic knee surgery 

system”, MICCAI 1999."
–  S. Park, R. D. Howe, and D. F. Torchiana, "Virtual Fixtures for Robotic Cardiac Surgery”, MICCAI 2001. 
–  S. Payandeh and Z. Stanisic, "On Application of Virtual Fixtures as an Aid for Telemanipulation and 

Training," Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002."

•  Discussion that follows draws upon work at IBM Research and within the CISST ERC at 
JHU.  E.g.,  

–  Funda, R. Taylor, B. Eldridge, S. Gomory, and K. Gruben, "Constrained Cartesian motion control for 
teleoperated surgical robots," IEEE Transactions on Robotics and Automation, vol. 12, pp. 453-466, 1996. 

–  R. Kumar, An Augmented Steady Hand System for Precise Micromanipulation, Ph.D thesis in Computer 
Science, The Johns Hopkins University, Baltimore, 2001. 

–  M. Li, M. Ishii, and R. H. Taylor, "Spatial Motion Constraints in Medical Robot Using Virtual Fixtures 
Generated by Anatomy," IEEE Transactions on Robotics, vol. 2, pp. 1270-1275, 2006. 

–  A. Kapoor, M. Li, and R. H. Taylor "Constrained Control for Surgical Assistant Robots," in IEEE Int. 
Conference on Robotics and Automation, Orlando, 2006, pp. 231-236. 

–  A. Kapoor and R. Taylor, "A Constrained Optimization Approach to Virtual Fixtures for Multi-Handed Tasks," 
in IEEE International Conference on Robotics and Automation (ICRA), Pasadena, 2008, pp. 3401-3406. 

–  M. Li, Intelligent Robotic Surgical Assistance for Sinus Surgery, PhD Thesis in Computer Science Baltimore, 
Maryland: The Johns Hopkins University, 2005."

–  Ankur Kapoor, Motion Constrained Control of Robots for Dexterous Surgical Tasks, Ph.D. Thesis in 
Computer Science, The Johns Hopkins University, Baltimore, September 2007 
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Original Motivation for IBM Work 

•  Kinematic control of robots for MIS 

•  E.g., LARS and HISAR robots 

•  LARS and other IBM robots were 
kinematically redundant 

–  Typically 7-9 actuated joints 

•  But tasks often imposed kinematic 
constraints 

–  E.g., no lateral motion at trocar 

•  Some robots (e.g., IBM/JHU HISAR and 
CMI’s AESOP) had passive joints 

•  General goals 

–  Exploit redundancy in best way possible 

–  Come as close as possible to providing 
desired motion subject to robot and task 
limits 

•  Our approach: view this as a constrained 
optimization problem 
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LARS degrees of freedom 

 XYZ

RCM 

  Ry

  R tool

  Ry
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View 
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Clip-on 
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Video tracking 
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LARS Video  
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LARS Video  
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Motion Specification Problem 

•  Requirements 

–  The tool shaft must pass within a specified distance of the entry port 
into the patient’s body 

–  The individual joint limits may not be exceeded  

•  Goals 
–  Aim the camera as close as possible at a target  

•  or move view in direction indicated by clip-on pointing device 

•  or move to track a video target on an instrument 

•  or aim the working channel of the endoscope at a target 

•  or something else (maybe a combination of goals) 

–  Keep the view as “upright” as possible 

–  Tool should pass as close as possible to entry port center 
–  Keep joints far away from their limits, to preserve options for future 

motion 

–  Minimize motion of XYZ joints 

–  Etc. 

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
24  600.445 Fall 2012 

 Copyright © R. H. Taylor 

Our approach: view as an optimization problem 

•  Currently formulate problem as constrained least 
squares problem 

•  Express goals in the objective function 

•  If multiple goals, objective function is a weighted sum 
of individual elements 

•  Add constraints for requirements 

•  Express constraints and objective function terms in 
whatever coordinate system is convenient 

•  Use Jacobean formulation to transform to joint space 

•  Solve for joint motion 
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Example: keep tool tip near a point 

    


D(

x) = ΔF(


q,Δ

q)•F •ptip −


pgoal

=
α ×

t + ε +


t −

pgoal    where  


t = F •ptip

α = J α (

q)Δ

q

ε = Jε (

q)Δ

q

   ΔF(

x)•F

   

ptip

   

pgoal

    

D(Δ

x)

Suppose we want to stay as close as possible 
while never going beyond 3mm from goal and 
also obeying joint limits 

    

Δqdes = argmin
Δ

q

 

D(Δ

x)

2
=
α ×

t + ε +


t −

pgoal

2

Subject to
α = J α (


q)Δ

q

ε = Jε (

q)Δ

q

α ×

t + ε +


t −

pgoal ≤ 3


qL −


q ≤ Δ


q ≤

qU −


q
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Example: keep tool tip near a point 

Suppose we want to stay as close as possible 
while never going beyond 3mm from goal and 
also obeying joint limits, but we also want to 
minimize the change in direction of the tool shaft 

    

Δqdes = argmin
Δ

q

 ζ

D(

x+Δ

x)

2
+η α ×R •


z

2

Subject to

x = Fi


ptip

D(

x+Δ

x)=
α ×

t + ε +


x −

pgoal

α = J α (

q)Δ

q ;  
ε = Jε (


q)Δ

q


D(

x+Δ

x) ≤ 3


qL −


q ≤ Δ


q ≤

qU −


q

 

    

x = Fi


ptip

   ΔF(

x)•F

   

ptip

   

pgoal

    

D(Δ
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Solving the optimization problem 

•  Constrained linear least squares 

–  Combine constraints and goals from task and robot control 

–  Linearize and constrained least squares problem 

–  E.g., using “non-negative least squares” methods developed by 
Lawson and Hanson  

–  Approach used in our IBM work and in Kumar, Li, Kapoor theses 

•  Constrained nonlinear least squares 

–  Approach explored by Kapoor (discuss later) 

    

Δ

qdes = argmin

Δ

q

EtaskΔ

x −

ftask

2
+ EqΔ


x −

fq

2

subject to

Δ

x = JΔ


q;  AtaskΔ


x ≤

btask ; AqΔ


q ≤

bq  
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Position 
control 

Motor 
currents 

Sensor 
values 

Surgeon input 
Plan information 
Anatomic models 
Safety constraints 

   

q, q

Linear least squares implementation 

    Etask ,

ftask

   F,

q

   

qdes

   

q, qSensor values 

Robot kinematics 
& motion limits 

    

Kins(), JKins ()

qL ≤


q ≤

qu ;Eq,


fq

    Atask ,

btaskTask level  

control 

Motion level 
control 

    

Δ

qdes = argmin

Δ

q

E • [Δ

x,Δ

q]T −


f

2

subject to
Δ

x = JΔ


q;  A • [Δ


x,Δ

q]T ≤


b
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Some IBM Movies 

Vision-guided targeting Early Constrained Motion 
System (LapSYS)  
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Steady Hand Robot 
High Level Constrained Control 

Handle 
Force Kv 

Joint 
Velocities 

Reference 
Direction 

Current Frame(s) 
Info. 

Geometric 
Constraints on 

Frame(s) 

Optimization  Framework 
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Sample task: steady hand path tracing  

M. Li et al. 
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Background: endoscopic sinus surgery 

Kennedy, D.W., W.E. Bolger , S. J. Zinreich , J. Zinreich, 
Diseases of the Sinuses: Diagnosis and Management. 2001.  
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Goal: robotically-assisted sinus surgery 

•  Difficulties with conventional 
approach 
–  Complicated geometry 
–  Safety-critical structures 
–  Limited work space 
–  Awkward tools 

•  Our approach  
–  Cooperatively controlled 

“Steady hand” robot 
–  Registered to CT models 
–  “Virtual fixtures” automatically 

derived from models 

tool

cavity

3D path

aperture

tip frame

tool boundary frame

M. Li et al. 
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Experiment Setup 

M. Li et al. 
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Experimental setup 

•  Plastic Skull Phantom 
–  Target path defined by embedded wire  

–  Radioopaque fiducials implanted on 
skull for registration 

•  Computer model 
–  Extracted from CT scan using 

standard software (Slicer) 

•  3D tracking of tools, etc. using 
Northern Digital Optotrak® 

•  Co-register model, robot, and optical 
tracker using standard techniques 

M. Li et al. 
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 Virtual Fixture Online Implementation 

R
ob

ot
 in

te
rf

ac
e 

State 

Path 

Tool tip guidance 
virtual fixture 

desPΔ

Constraint 
generation 

( ) 2
min

Subject to
             

tip desW J q P

G q g

⋅ ⋅ Δ − Δ

⋅Δ ≥

Registered model 

M. Li; R. Taylor; ICRA 2005 
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• Anatomy – triangulated surface models 

•  Patient-specific model of nose & sinus 
derived from CT 

•  High complexity: 182,000 triangles & 99,000 
vertices 

• Tool  shaft -- cylinder 

• The boundary constraint generation 
requires us to find close-point pairs 
between boundary surface model & tool 
shaft 

Boundary Constraints Generation 

M. Li et al. 
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• Anatomy – triangulated surface models 

•  Patient-specific model of nose & sinus 
derived from CT 

•  High complexity: 182,000 triangles & 99,000 
vertices 

• Tool  shaft -- cylinder 

• The boundary constraint generation 
requires us to find close-point pairs 
between boundary surface model & tool 
shaft 

• Problem: How can we generate the 
right constraints in real time??? 

Boundary Constraints Generation 

M. Li et al. 
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Our solution: efficient search method using 
covariance tree representation of model 

Covariance trees: 
•  Williams & Taylor, 1998; other 

authors  
•  Variation of k-d trees 
•  Basic idea: 

–  Hierarchically split 3D model 
into sub-volumes 

–  Realign coordinate system of 
each sub-volume to align with 
moments of inertia 

•  Produces bounding boxes that 
closely approximate boundaries & 
fast searches 

M. Li et al. 
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One difference from ICP problem 

One difference from ICP problem: 
•  Here we in principle need to 

identify all anatomy that can 
interfere with tool shaft 

•  Consequently modify search to 
find all triangle edges that are 
closer than some threshold to tool 
shaft 

•  Further modify to prune search to 
eliminate redundant constraints 
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Control Implementation 

•  Formulate constrained least squares problem 
•  Constraints & objective function include terms for 

desired tip motion, joint limits, boundary constraints 

  subject to 

( )
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int

min 0
0
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M. Li et al. 
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•  Tip frame 

•  Boundary constraint 

min 

subject to  

min 

subject to  

•  Joints limitation 
min  

subject to  

destiptip PP −Δ−Δ

THDPP tip
T

dtip ≥Δ⋅Δ

dPPPn bkk
T
b ≥−Δ+⋅ )(

kk PW Δ⋅

qqqqq −≤Δ≤− maxmin

qWjo Δ⋅int

( )
( ) kkk

kkk

hqqJH
qqJW

≥Δ

Δ=ζ

int int

int int

jo s jo s

jo s jo s

W q

H q h
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Δ ≥

( )( )
( )

tip tip tip tip des

tip des tip tip

W J q q P

H J q q h
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= ⋅ Δ − Δ

Δ ≥

kk PP Δ+
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Control Implementation 

M. Li et al. 
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Control implementation 

•  Solve problem numerically with 
standard methods (Lawson & 
Hanson, 1974) 

•  Performance: 

–  6 ms/iteration on 2GHz 
Pentium 4 PC 

–  Typically 20 to 39 
constraints 

M. Li et al. 
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The average time in 
each control loop for the 
boundary searching is 
~6ms  

Results 

M. Li et al. 
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Results: Robot vs Freehand 

0

1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X Fractional displacement along path 

Y
 T

ra
ck
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E
rr
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 (

m
m

) Freehand Error: 1.8 ± 1.1mm 

Robot Error: 0.8 ± 0.4 mm 
M. Li et al. 
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Results: Robot vs Freehand 

Approx 1.5:1 improvement in time! 
M. Li et al. 
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Combine constraints 

Select one or 
more 

Move 
along a 

line 

Rotate 
around a 

line 

Maintain a 
direction 

Prevent plane 
penetrating 

Stay on a 
point 

Customized virtual 
fixtures 

Translational part 

Rotational part 

Single Frame Multiple Frame 

M. Li, A. Kapoor 
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5 Basic Geometric Constraints 
(Virtual fixture library) 

Move along a line  

Rotate around a line 

Stay on a point 

Maintain a direction Prevent plane 
penetrating 

Optimization 

M. Li, A. Kapoor 
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Example: Suturing 

The suturing task involves 

–  Select entry and exit 
points 

–  Align (Move & Orient) 
Needle 

–  Bite: Pass Needle 
–  Loop 

–  Knot 

Exit Point 
Entry 
Point 

Tangent 
direction 

Center Line of 
wound 

Substep 5 

Substep 2 
Substep 4 

Ideal Path 

Normal 
direction 

Radius 
of 

Needle 

M. Li, A. Kapoor 
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Suturing: Align Step 

0. Move Along a Line 

1. Stay at a point + Rotate about a line 

M. Li, A. Kapoor 
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Suturing: Align Step 

Ideal 
path for 
suture 

4. Stay at a point + Rotate about a line 

2. Stay at a point + Rotate about a line 

3. Puncture 

M. Li, A. Kapoor 
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Suturing: Bite Step 

•  Ideal trajectory is a circle with radius equal to needle 
radius. 

•  Needle plane is parallel to entry and exit points and 
surface normal. 

Ideal path 
for suture 

M. Li, A. Kapoor 
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Example: “Virtual fixtures” for 
suturing assistance 

M. Li, A. Kapoor, et al 

Model 

Information 

Plan 

General information  
( anatomic atlases, 

statistics, rules) 

Patient-specific 
Information 

( Images, lab 
results, genetics, 

etc.) 

Action 
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Suturing: Results 

The average error (mm) in ideal and actual  points as 
measured by OptoTrak®  
Preliminary data collected from 4 users 5 trials each. 

2.1; σ = 1.2 -- Manual 

0.7742; σ = 0.37 0.6375; σ = 0.12 Robot 

Exit (mm) Entry (mm) Error 

•  Suturing task using VF showed significant  
improvement in performance over freehand. 
•  Can be performed at awkward angles 
•  Avoids multiple trials and large undesirable 

movements inside tissue. M. Li, A. Kapoor 



28 

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
58  600.445 Fall 2012 

 Copyright © R. H. Taylor 

•  Constraints on the task can be “hard” or “soft” 

•  The relative sizes depend on the procedure, 
ranging from micros to tenths of millimeter. 

•  Soft constraints allow the controller to 
accommodate uncertainties inherent in surgical 
procedures. 

Hard and soft constraints 

Preferred region 

Safety region 

Forbidden region 

Avoidance Line following 

Thanks: A. Kapoor 
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“Soft” constraint implementation 

    

Suppose that we have a problem of the form

Δ

qdes = argmin  E(Δ


q)

2
   

subject to a constraint of the form 
Ai (Δ

q) ≤ bi  

    A(Δ

q)

 Cost

 bi
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“Soft” constraint implementation 

    A(Δ

q)

 Cost

 bi  bi + sup

    

Add an explicit slack si  and add a penalty term to the objective function

Δ

qdes = argmin  E(Δ


q)

2
+ηisi

2    

subject to a constraint of the form 
Ai (Δ

q) − si ≤ bi

0 ≤ si ≤ sup,i

This process can be repeated several times to produce 
progressively steeper costs 

But suppose we want to make 
the barrier “soft”.  I.e., allow 
the robot to go beyond the 
barrier at increasing cost until 
it hits a harder barrier later 
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Example: Stay near a point 

After incremental motion 

close to 

Target Position: 

We want… 

where 

Tool at time t 

Tool at time t + Δt 

A. Kapoor,  et al. 
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Using Linear Constrained Quadratic Optimization 

Matrix representation 
Tool at time t 

Tool at time t + Δt 

Use Constrained Least 
Squares to solve 

A. Kapoor,  et al. 
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Linear approximation for constraints 

•  n x m increase 
–  Polyhedron approaches the 

inscribed sphere 

–  Linearized conditions are a 
better approximation  

–  More constraints require 
more time to solve the 
optimization problem 

•  Symmetrical polyhedron 
–  nxm = 4x4 

•  Bounded polyhedron 
–  nxm = 3x3 

A. Kapoor,  et al. 
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Example Task 

•  Constraint 1: Tip to move 
along curve C 

•  Constraint 2: Origin of {s} 
to move along 

•  Objective: Handle to 
follow user input 

Mechanical 
RCM 

Virtual RCM 

Desired 
path 

A. Kapoor,  et al. 
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Results for Example Task 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

"Hard" Constraints
"Soft" Constraints

Force (N) 

“Hard”, ws,i = 1 x 10+3 

“Soft”, ws,i = 1 x 10-3 

A. Kapoor,  et al. 
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Nonlinear Optimization 

•  One problem with linearized least squares is the 
proliferation of constraints to approximate the real 
constraints 

•  Consequently, it is worth considering alternatives that 
can handle more general formulas “directly” 

    

Δ

qdes = argmin

Δ

q

C(Δ

x,Δ

q,

s)

subject to
Δ

x = JΔ


q

A(Δ

x,Δ

q,

s) ≤

b
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Using Non-Linear Constrained Optimization 

•  Use Sequential Quadratic Program* method 

•  SQP solves the following problem iteratively 

•  Start with a solution [Δqk, sk]t 

•  Descent direction along with step size determine next 
solution [Δqk+1, sk+1]t 

*P. Spellucci, Math. Prog., ‘98  

A. Kapoor,  et al. 
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Remarks: Non-Linear Constraints 

•  Current incremental motion can be used as starting 
guess for next motion 

•  Worst case number of constraints n times m, n = # 
variables, m = # nonlinear constraints 

•  Analytical gradient increases speed 

A. Kapoor,  et al. 
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Linear v. Non-Linear Constraints 

NonLinear
Linear Approximation

Accuracy Time 

4 8 16 32 Non-Lin

2.5

5.0

7.5

10.0

12.5

15.0

# Hyperplanes used for approximation 

T
im

e 
(m

s)
 

Joint #3 is 
constrained 

Tip 
trajectory 

Linear 

Non-Linear 

A. Kapoor,  et al. 
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Effect of increasing control-loop time 

•  Large error at sharp turning 

•  Small interval reduces error 

Interval: 150ms Interval: 40ms 

Ming Li et al., IROS ‘05 
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Model 

Information 

Plan 

General information  
( anatomic atlases, 

statistics, rules) 

Patient-specific 
Information 

( Images, lab 
results, genetics, 

etc.) 

Action 

Example: Two-handed virtual fixture 
for centering knot with 
visual feedback 

Ankur Kapoor 
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Team: A. Kapoor, Kai Xu, Wei Wei, N. Simaan, 
P. Kazanzides, R. H. Taylor 
Collaborator:  P. Flint, MD 

Scalable Robot for Dexterous Surgery in Small Spaces 
(aka Snake Like Robot) 

4.2 mm 
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Snake Like Robot 
System Architecture 

Low Level 
Controller 

High Level 
Controller 
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DaVinci Master Robot 
High Level Constrained Control 

Joint Positions 
(qm) 

Joint 
Velocities 

Current Frame(s) 
Info. 

Geometric 
Constraints on 

Frame(s) 

Set Points 

From Slave… 

Optimization  Framework 
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Master Side High-Level Controller 

•  Objectives: 

–  Minimize error between desired motion and actual motion 

–  Oppose motion that increases master-slave tracking error 
–  Minimize the extraneous motion of the joints, and 

–  Avoid large incremental joint motions that could occur near 
singularities 
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Master Side High-Level Controller 

•  Constraints: 

–  General form: Hm,j+Δqm≥hm,j 

–  Not allow motion outside joint range 
–  Not allow motion that exceeds joint velocity limits 

–  Additional constraints can be added from the VF Library 
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DaVinci Slave Robot 
High Level Constrained Control 

Joint 
Velocities 

Current Frame(s) 
Info. 

Geometric 
Constraints on 

Frame(s) 

From Master… 

To Master… 

Joint Positions 

Optimization  Framework 

Set Points 
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Slave Side High-Level Controller 

•  Objectives: 

–  Minimize error between desired motion and actual motion 

–  Minimize the extraneous motion of the joints, and 

–  Avoid large incremental joint motions that could occur near 
singularities 
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Slave Side High-Level Controller 

•  Constraints: 

–  Not allow motion outside joint range 

–  Not allow motion that exceeds joint velocity limits 

–  Collision avoidance between slaves 
–  More constraints can be added from the VF Library 
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µForce Scaling Cooperative Control 

Kumar  et al (ICRA’ 00) ; Balicki et al. (MICCAI‘10); Uneri et al., BioRob 2010 

µForce Scaling 
Amplifies (ϒ gain) the human-imperceptible 
forces sensed at the tool tip (Ft) to handle 
interaction forces (Fh) by modulating robot 
velocity. 

     
x =α Fh−γFt( ) , e.g., γ=500

Cooperative Control 
Velocity at the tool (V) is proportional to 
(α gain) the user’s input force at the 
handle (Fh) 

    
x = α Fh
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µForce Guided Cooperative Control 

¬  User fights against ever increasing resistance 

  Ensure safety tip force limits 

¬  User interaction is limited at high-resistance regions 

  Try to avoid those regions for later peeling 

¬  User gets “stuck”, gives up, tries re-approach 

  Ensure continuous user motion, 
even at the boundaries 

Uneri et al., BioRob 2010 
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µForce Guided Cooperative Control 

• Global Limiting 
–  Task-specific tip force limit 
–  User controlled limit distribution 

• Continuous motion at the constraint 
boundaries 

• Virtual spring construct to ensure 
stability 

Local Force Minimization 
• Guiding user towards direction of minimum 
resistance 

• Sensitivity variable allows user override 

• Haptically intuitive response 

• Avoids / postpones reaching limits 

Uneri et al., BioRob 2010 

•    
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Experimental Platform 

Focusing on: 

• Properties of the tissue we 
interact with 

• The method of interaction, i.e. 
performance of our algorithms 

Performed on: 

•  Inner shell membrane of raw 
eggs 

•  Surrogate tissue for epiretinal 
membrane peeling  

Uneri et al., BioRob 2010 
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Experiment: 
Tissue Force Characterization 

•  A corrected position allows us to observe tissue strain 

•  Controlled constant force application 

–  Incremented by 1mN, with 10s delay, over a range 
of 1-10mN 

•  Characteristic curve obtained reveals a similar 
pattern to those seen in fibrous tissue tearing 
–  Toe region: Safe 

–  Linear region: Predictive 

–  Failure region: Peeling 

Uneri et al., BioRob 2010 
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Experiment: 
µForce Guided Cooperative Control 

•  Task: delaminate PVC strip with acrylic 
adhesive from a wax surface. 

•  Strip is peeled at an average of 45° 

•  User was guided away from the 
centerline in the direction of lowest 
resistance 

Uneri et al., BioRob 2010 
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Experiment: 
µForce Guided Cooperative Control 

•  Goal: Remove a section of egg 
inner shell membrane 

•  Circular trajectory consistent 
with the results from the strip 
peeling experiment 

•  Magnify the perception of tip 
forces lateral to direction of 
desired motion 

•  Results in a peel pattern seen 
Capsulorhexis maneuver 

Peeling Inner Egg Shell Membrane 

Peel 
Boundary  

ToolTip 
Path 

Uneri et al., BioRob 2010 
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Information-enhanced robotic surgery 

Stereo video 

Tool motions 

augmented 
reality displays 

imaging 

safety barriers 
shared control 
“virtual fixtures” 

SAW 
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Information-enhanced robotic surgery 

Stereo video 

Tool motions 

augmented 
reality displays 

imaging 

safety barriers 
shared control 
“virtual fixtures” 
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Information-enhanced robotic surgery 

Stereo video 

Tool motions 

augmented 
reality displays 

imaging 

safety barriers 
shared control 
“virtual fixtures” 

Fast local  
compliance 

law 
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Virtual Fixture “Hook” in DaVinci API 

•  Experimental interface not in any 
clinical or commercial product. 

•  Specification developed jointly by 
JHU and Intuitive to support research 

•  Prototyped at JHU by Tian Xia and 
Russ Taylor 

•  Current version implemented in 
DaVinci “S” model by Lawton Verner 
at ISI, with “hooks” in a proprietary ISI   
Application Program Interface 

•  Accessed through cisst/SAW libraries 
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Compliance virtual fixtures 

  FC

      

F = R,

p⎡⎣
⎤
⎦ = current pose; p = current velocity

Fc =  [Rc ,

pc ] =  position compliance frame


k(+),

k(−) =  position stiffness factors


b(+),

b(−) =  damping factors


g(+),

g(−) =  force bias terms

Ro = orientation compliance frame

ko

(+),

ko

(−) = orientation stiffness factors

τ (+), τ (−) = torque bias terms

t = time remaining on timeout counter
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Compliance virtual fixtures 

      

if (t>0) then

begin
t = t−1

q = FC

−1p = RC
−1 p−


pc( )


v = RC

−1 p

h =

0;

ψ=

0

for i ∈ x,y,z{ } do

if 

qi ≤ 0 then 


hi =


gi

(−) +

k i

(−)qi +

bi

(−) v i  else 

hi =


gi

(+) +

k i

(+)qi +

bi

(+) v i{ };

f = RC


h; add 


f  to the forces exerted on the master


θ = Rodrigues vector corresponding to ΔR = Ro

−1R
for i ∈ x,y,z{ } do

if 

θi ≤ 0 then 


ψi =


τ i

(−) +

k i

(−)

θi  else 


ψi =


τ i

(+) +

k i

(+)

θi{ };

add Ro


ψ to the torques exerted on the master

end

  FC
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Surface following virtual fixture 

  Fc

  

p

     Fc
−1p

Goal: Stay on a surface; bias force 
drawing  toward the surface; spring force 
resisting penetration 

     


pc =  closest point on surface

Rc


z =  surface normal at 


pc


k(−) = [0,0,−stiffness]

g(+) = [0,0,−bias]

Others = 0
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Curve following virtual fixture 

  Fc

  

p

     Fc
−1p

Goal: Stay on a surface; bias force 
drawing  toward the surface; spring force 
resisting penetration; follow curve on 
surface 

     


pc =  closest point on line on surface

Rc


z =  surface normal at 


pc

Rc


x =  line tangent at 


pc


k(−) = [0,−follow stiffness,−penetration stiffness]

k(+) = [0,−follow stiffness,−follow stiffness]

g(+) = [0,0,−bias]   (Note :may just set to 0)

Others = 0
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Surface following virtual fixture 

  Fc

    Fc
−1F

Goal: Stay on a surface; bias force 
drawing  toward the surface; spring force 
resisting penetration; torque to align to 
surface normal 

     


pc =  closest point on surface

Rc


z =  surface normal at 


pc


k(−) = [0,0,−stiffness]

g(+) = [0,0,−bias]

ko

(+) =

ko

(−) = [−orient stiffness,−orient stiffness,0]
Others = 0

 F
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Limitation and Extensions 

•  The specific abstraction just presented has some limitations.  In 
particular, it separates the position and orientation compliance in a 
way that makes coupling of orientations and translations non-trivial. 

•  This can be gotten around to some extent by continually updating the 
virtual fixture compliance parameters.   

•   There are several obvious extensions that may be tried.  For 
example, one can provide fuller matrices for virtual fixture force/torque 
generation.  E.g.: 

      

Compute 

q,

v,

θ,

φ  from Fc  and Ro,where (


φ = d


θ / dt)

Compute a region i  of local configuration space from 

q and 


θ


h
φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= K i i


q

θ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+Bi i


v
φ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+


gi

τ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥


