Homework 1 Scenario

Summer 2013 - Copyright © Russell H. Taylor

Consider the stereotactic navigation scenario illustrated in the figure above. Here, we have a stereotactic tracking system whose coordinate system is represented by F_{T}, capable of tracking the pose $F_{T B}$ of a tracker body F_{B} attached to the patient and the pose $F_{T D}$ of another tracker body \mathbf{F}_{D} attached to a pointer tool. The position of the tip of the pointer tool may be calibrated to be at a position $\overrightarrow{\mathbf{p}}_{D t}$ relative to \mathbf{F}_{D} (we will do this as part of the assignment).

CT and MRI images of the patient are available. The anatomic structure \mathbf{F}_{x} of greatest interest (which you may think of as a tumor or other malformation) is visible in the MRI image at pose $F_{M x}$ in MRI coordinates but not in the CT image. However, another anatomic structure F_{A} is visible at pose $F_{M A}$ in MRI coordinates and $F_{C A}$ in CT coordinates.

After the MRI image was acquired, but before the CT image was acquired, small fiducial objects were pasted to the patient's skin. These markers are visible at locations $\overrightarrow{\mathbf{c}}_{i}$ in CT coordinates. During a registration step, the tracked pointer is placed on each of the small fiducials, and the corresponding position $\overrightarrow{\mathbf{b}}_{i}$ relative to \boldsymbol{F}_{B} is computed (see questions, below). The corresponding values of $\overrightarrow{\mathbf{b}}_{i}$ and $\overrightarrow{\mathbf{c}}_{i}$ are used to compute the registration transformation F_{BC} between CT and patient
tracker body coordinates, so that $\mathrm{F}_{\mathrm{BC}} \overrightarrow{\mathbf{c}}_{i} \approx \overrightarrow{\mathbf{b}}_{i}$. At some point, we will want to know the registration $\mathrm{F}_{B M}$ between MRI and tracker body coordinates, but this has not yet been computed.

Question 1

A. Assuming that the value $\overrightarrow{\mathbf{p}}_{D t}$ is known, and given values for $\mathbf{F}_{T B}$ and $\mathbf{F}_{T D}$ when the pointer tip is touching fiducial i, give a formula for computing $\overrightarrow{\mathbf{b}}_{i}$. Give the answer first in terms of the " $F_{p q}$ " variables and then in terms of the corresponding " $\mathbf{R}_{p q}$ " and " $\overrightarrow{\mathbf{p}}_{p q}$ " variables.
B. Now, suppose that $\overrightarrow{\mathbf{p}}_{D t}$ is not known, outline a procedure for determining both $\overrightarrow{\mathbf{p}}_{D t}$ and the $\overrightarrow{\mathbf{b}}_{i}$. Explain the workflow, explain what values will be measured, and give the computational algorithm. (Hint: this will involve a pivot calibration).
C. Assuming that $F_{B C}$ has been computed by some registration process, give a formula for computing $F_{B M}$, given the other information available. Give the answer first in terms of the " $F_{p q}$ " variables and then in terms of the corresponding " $\mathbf{R}_{p q}$ " and " $\overrightarrow{\mathbf{p}}_{p q}$ " variables.
D. Given values for $F_{T B}$ and $F_{T D}$, give a formula for computing the position $\overrightarrow{\mathbf{p}}_{M t}$ in MRI coordinates corresponding to the current position $\overrightarrow{\mathbf{p}}_{t i p}$ of the pointer tip. Give the answer first in terms of the " $\mathbf{F}_{p q}$ " variables and then in terms of the corresponding " $\mathbf{R}_{p q}$ " and " $\overrightarrow{\mathbf{p}}_{p q}$ " variables.
E. Suppose that the surgeon is now operating on the patient and has identified an anatomic feature located at position $\overrightarrow{\mathbf{p}}_{x f}$ relative to a local coordinate system \mathbf{F}_{x} associated with the tumor. Given values for $\mathbf{F}_{T B}$ and $\mathbf{F}_{T D}$, give a formula for computing the distance between the current position $\overrightarrow{\mathbf{p}}_{t i p}$ of the pointer tip and the anatomic feature. Give the answer first in terms of the " $F_{p q}$ " variables and then in terms of the corresponding " $\mathbf{R}_{p q}$ " and " $\overrightarrow{\mathbf{p}}_{p q}$ " variables.

Question 2

Here we will implement simple MATLAB functions to do some of these computations. You will be provided with a MATLAB package implementing basic Cartesian data types and computations (described elsewhere), together with a special MATLAB class "HW1Scenario", which will implement the following methods

```
HW1 = HW1Scenario(dR,dP,jR,jP)
        returned measurement
    \(\% \mathrm{jR}, \mathrm{jP}=\) amount of random jogging of tracker base relative to patient
[FB,FD] = HW1.SampleAtMarker(m,rx,ry,rz)
    \% \(\mathrm{m}=\) patient marker number
        onto patient marker m
[FCA,cMarkers] = HW1.SegmentCT()
    \(\%\) FCA \(=\mathbf{F}_{C A} ;\) cMarkers \(=\) vct3Array of the \(\overrightarrow{\mathbf{c}}_{i}\)
[FMA,FMX] = HW1.SegmentMRI()
    \(\% F M A=F_{M A} ; F M X=F_{M X}\)
```

 \% dR, dP = amount of random error assumed for tracker system for each
 \% rx,ry,rz = angles of rotation (in degrees) about \(x, y, z\) axes of the pointer
 probe relative to the tracking system when the pointer tip is placed
 A. Implement your answer to Question 1B using the MATLAB functions provided. You should produce a program with the general format
[pDt,b] = PerformPivotCalibration(HW1,m)
\% m = patient marker number
\% call the function HW1.SampleAtMarker(m,xD,yD,zD) multiple times to simulate taking data for pivot calibration
B. Implement a MATLAB function to compute $F_{B C}$ and $F_{B M}$ from the results of question 2A and a call to HW1.SegmentCT(). For this purpose you can also use the provided MATLAB function
$\mathrm{F}=$ FindBestRigidTransformation(A,B)
\% $A, B=$ vct3Arrays of 3D points
$\% \mathrm{~F}=$ Transformation such that $\mathrm{F}^{*} \mathrm{~A}(\mathrm{i})=\mathrm{B}(\mathrm{i})$
Note that you will be implementing this function in a later assignment
C. Implement a MATLAB function to compute $\mathrm{FBX}=$ the pose of anatomic structure X relative to patient attached marker B.

Your homework should include a script that looks something like this

```
disp('No Error');
HW1 = HW1Scenario(0,0,0,0);
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
disp('Jogging Only is next');
HW1 = HW1Scenario(0,0,3,5);
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
disp('Tiny Noise is next');
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
disp('Larger Noise is next');
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
```

