Homework 1 Scenario

Consider the stereotactic navigation scenario illustrated in the figure above. Here, we have a stereotactic tracking system whose coordinate system is represented by \mathbf{F}_{τ} , capable of tracking the pose $\mathbf{F}_{\tau B}$ of a tracker body \mathbf{F}_{B} attached to the patient and the pose $\mathbf{F}_{\tau D}$ of another tracker body \mathbf{F}_{D} attached to a pointer tool. The position of the tip of the pointer tool may be calibrated to be at a position $\vec{\mathbf{p}}_{Dt}$ relative to \mathbf{F}_{D} (we will do this as part of the assignment).

CT and MRI images of the patient are available. The anatomic structure \mathbf{F}_{χ} of greatest interest (which you may think of as a tumor or other malformation) is visible in the MRI image at pose \mathbf{F}_{MX} in MRI coordinates but not in the CT image. However, another anatomic structure \mathbf{F}_{A} is visible at pose \mathbf{F}_{MA} in MRI coordinates and \mathbf{F}_{CA} in CT coordinates.

After the MRI image was acquired, but before the CT image was acquired, small fiducial objects were pasted to the patient's skin. These markers are visible at locations \vec{c}_i in CT coordinates. During a registration step, the tracked pointer is placed on each of the small fiducials, and the corresponding position \vec{b}_i relative to \mathbf{F}_B is computed (see questions, below). The corresponding values of \vec{b}_i and \vec{c}_i are used to compute the registration transformation \mathbf{F}_{BC} between CT and patient Summer 2013 – Copyright © Russell H. Taylor

2 nf 8

tracker body coordinates, so that $\mathbf{F}_{BC} \vec{\mathbf{c}}_i \approx \vec{\mathbf{b}}_i$. At some point, we will want to know the registration \mathbf{F}_{BM} between MRI and tracker body coordinates, but this has not yet been computed.

Question 1

- A. Assuming that the value $\vec{\mathbf{p}}_{Dt}$ is known, and given values for \mathbf{F}_{TB} and \mathbf{F}_{TD} when the pointer tip is touching fiducial *i*, give a formula for computing $\vec{\mathbf{b}}_i$. Give the answer first in terms of the " \mathbf{F}_{pq} " variables and then in terms of the corresponding " \mathbf{R}_{pq} " and " $\vec{\mathbf{p}}_{pq}$ " variables.
- B. Now, suppose that $\vec{\mathbf{p}}_{Dt}$ is not known, outline a procedure for determining both $\vec{\mathbf{p}}_{Dt}$ and the $\vec{\mathbf{b}}_i$. Explain the workflow, explain what values will be measured, and give the computational algorithm. (Hint: this will involve a pivot calibration).
- C. Assuming that \mathbf{F}_{BC} has been computed by some registration process, give a formula for computing \mathbf{F}_{BM} , given the other information available. Give the answer first in terms of the " \mathbf{F}_{pq} " variables and then in terms of the corresponding " \mathbf{R}_{pq} " and " $\mathbf{\vec{p}}_{pq}$ " variables.

- D. Given values for $\mathbf{F}_{\tau B}$ and $\mathbf{F}_{\tau D}$, give a formula for computing the position $\mathbf{\vec{p}}_{Mt}$ in MRI coordinates corresponding to the current position $\mathbf{\vec{p}}_{tip}$ of the pointer tip. Give the answer first in terms of the " \mathbf{F}_{pq} " variables and then in terms of the corresponding " \mathbf{R}_{pq} " and " $\mathbf{\vec{p}}_{pq}$ " variables.
- E. Suppose that the surgeon is now operating on the patient and has identified an anatomic feature located at position $\vec{\mathbf{p}}_{xf}$ relative to a local coordinate system \mathbf{F}_x associated with the tumor. Given values for \mathbf{F}_{TB} and \mathbf{F}_{TD} , give a formula for computing the distance between the current position $\vec{\mathbf{p}}_{tip}$ of the pointer tip and the anatomic feature. Give the answer first in terms of the " \mathbf{F}_{pq} " variables and then in terms of the corresponding " \mathbf{R}_{pq} " and " $\vec{\mathbf{p}}_{pq}$ " variables.

Question 2

Here we will implement simple MATLAB functions to do some of these computations. You will be provided with a MATLAB package implementing basic Cartesian data types and computations (described elsewhere), together with a special MATLAB class "HW1Scenario", which will implement the following methods

HW1 = HW1Scenario(dR,dP,jR,jP)

- % dR, dP = amount of random error assumed for tracker system for each returned measurement
- % jR, jP = amount of random jogging of tracker base relative to patient

[FB,FD] = HW1.SampleAtMarker(m,rx,ry,rz)

% m = patient marker number

% rx,ry,rz = angles of rotation (in degrees) about x,y,z axes of the pointer probe relative to the tracking system when the pointer tip is placed onto patient marker m

[FCA,cMarkers] = HW1.SegmentCT()

% FCA = \mathbf{F}_{CA} ; cMarkers = vct3Array of the $\vec{\mathbf{c}}_{i}$

[FMA,FMX] = HW1.SegmentMRI()

% FMA = \mathbf{F}_{MA} ; FMX = \mathbf{F}_{MX}

- A. Implement your answer to Question 1B using the MATLAB functions provided. You should produce a program with the general format
 - [pDt,b] = PerformPivotCalibration(HW1,m)
 - % m = patient marker number
 - % call the function HW1.SampleAtMarker(m,xD,yD,zD) multiple times to simulate taking data for pivot calibration
- B. Implement a MATLAB function to compute \mathbf{F}_{BC} and \mathbf{F}_{BM} from the results of question 2A and a call to HW1.SegmentCT(). For this purpose you can also use the provided MATLAB function

F=FindBestRigidTransformation(A,B)

% A,B = vct3Arrays of 3D points

% F = Transformation such that $F^*A(i)=B(i)$

Note that you will be implementing this function in a later assignment

C. Implement a MATLAB function to compute FBX = the pose of anatomic structure X relative to patient attached marker B.

Your homework should include a script that looks something like this

```
disp('No Error');
HW1 = HW1Scenario(0,0,0,0);
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
```

```
disp('Jogging Only is next');
HW1 = HW1Scenario(0,0,3,5);
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
```

```
disp('Tiny Noise is next');
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
```

```
disp('Larger Noise is next');
[b,dPt] = HW1PivotCal(HW1,1); disp([b.el';dPt.el']);
[fbc,fbm,fba,fbx]=HW1Register(HW1)
```