Interpolation and Deformations A short cookbook

Linear Interpolation

$$
\begin{aligned}
\overrightarrow{\mathbf{p}}_{2} & =\left[\begin{array}{lll}
40 & 30 & 20
\end{array}\right]^{T} \\
\rho_{2} & =20
\end{aligned}
$$

- $\overrightarrow{\mathbf{p}}_{3}=\left[\begin{array}{lll}20 & 20 & 20\end{array}\right]^{T}$
$\rho_{3}=10$
$\overrightarrow{\mathbf{p}}_{1}=\left[\begin{array}{lll}10 & 15 & 20\end{array}\right]^{T}$
$\rho_{1}=5$

Linear Interpolation

$$
\begin{aligned}
& \therefore \overrightarrow{\mathbf{p}}_{2} \\
&=\left[\begin{array}{lll}
40 & 30 & 20
\end{array}\right]^{T} \\
& \overrightarrow{\mathbf{q}}_{2}=\overrightarrow{\mathbf{b}}
\end{aligned} \quad \begin{aligned}
& \bullet \overrightarrow{\mathbf{p}}_{3}=\left[\begin{array}{lll}
20 & 20 & 20
\end{array}\right]^{T} \\
& \overrightarrow{\mathbf{q}}_{3}=\overrightarrow{\mathbf{a}}+1 / 3(\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}})
\end{aligned}
$$

Linear Interpolation

$$
\begin{aligned}
A_{3} & =A_{1}+\lambda\left(A_{2}-A_{1}\right) \\
& =(1-\lambda) A_{1}+\lambda A_{2} \\
\lambda & =\frac{\left(\overrightarrow{\mathbf{p}}_{3}-\overrightarrow{\mathbf{p}}_{1}\right) \bullet\left(\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}\right)}{\left(\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}\right) \bullet\left(\overrightarrow{\mathbf{p}}_{2}-\overrightarrow{\mathbf{p}}_{1}\right)}
\end{aligned}
$$

Bilinear Interpolation

Bilinear Interpolation

$$
6
$$

$$
\begin{aligned}
\overrightarrow{\mathbf{u}}(\lambda, \mu) & =\lambda\left(\mu \overrightarrow{\mathbf{u}}_{i+1, j+1}+(1-\mu) \overrightarrow{\mathbf{u}}_{i+1, j}\right)+(1-\lambda)\left(\mu \overrightarrow{\mathbf{u}}_{i, j+1}+(1-\mu) \overrightarrow{\mathbf{u}}_{i, j}\right) \\
& =\overrightarrow{\mathbf{u}}_{i, j}+\lambda\left(\overrightarrow{\mathbf{u}}_{i+1, j}-\overrightarrow{\mathbf{u}}_{i, j}\right)+\mu\left(\overrightarrow{\mathbf{u}}_{i, j+1}-\overrightarrow{\mathbf{u}}_{i, j}\right)+\lambda \mu\left(\overrightarrow{\mathbf{u}}_{i+1, j+1}-\overrightarrow{\mathbf{u}}_{i, j}\right)_{099}
\end{aligned}
$$

Bilinear Interpolation

$A(\lambda, \mu)=$ interpolate $\left(\{\lambda, \mu\},\left\{A_{i, j}, A_{i+1, j}, A_{i+1, j+1}, A_{i, j+1}\right\}\right.$

N -linear Interpolation

Let

$$
\bar{\Lambda}_{N}=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}, \text { with } 0 \leq \lambda_{k} \leq 1
$$

be a set of interpolation parameters, and let

$$
\overline{\mathbf{A}}=\left\{A_{1}, \ldots, A_{2^{v}}\right\}
$$

be a set of constants. Then we define:
NlinearInterpolate $\left(\Lambda_{N}, \mathbf{A}\right)=$

$$
\begin{aligned}
& \left(1-\lambda_{N}\right) \text { NlinearInterpolate }\left(\Lambda_{N-1},\left\{A_{1}, \ldots, A_{2^{N-1}}\right\}\right. \\
& +\lambda_{N} \text { NlinearInterpolate }\left(\Lambda_{N-1},\left\{A_{2^{N-1}+1}, \ldots, A_{2^{N}}\right\}\right)
\end{aligned}
$$

NOTE: Sometimes in this situation we will use notation

$$
\begin{aligned}
A\left(\bar{\Lambda}_{N}\right) & =A\left(\lambda_{1}, \ldots, \lambda_{N}\right) \\
& =\text { NlinearInterpolate }\left(\bar{\Lambda}_{N}, \overline{\mathbf{A}}\right)
\end{aligned}
$$

Barycentric Interpolation

Barycentric Interpolation

$$
=\lambda \overrightarrow{\mathbf{p}}_{1}+\mu \overrightarrow{\mathbf{p}}_{2}+(1-\lambda-\mu) \overrightarrow{\mathbf{p}}_{3}
$$

$$
\overrightarrow{\mathbf{p}}(\lambda, \mu, v)=\lambda \overrightarrow{\mathbf{p}}_{1}+\mu \overrightarrow{\mathbf{p}}_{2}+v \overrightarrow{\mathbf{p}}_{3} \text { where } \lambda+\mu+v=1
$$

$$
A(\lambda, \mu, v)=\lambda A_{1}+\mu A_{2}+v A_{3}
$$

Barycentric Interpolation

$$
\left[\begin{array}{c}
\overrightarrow{\mathbf{p}} \\
1
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{\mathbf{p}}_{1} & \overrightarrow{\mathbf{p}}_{2} & \overrightarrow{\mathbf{p}}_{3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\mu \\
v
\end{array}\right]
$$

Barycentric Interpolation

Let

$$
\vec{\Lambda}=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\} \text {, with } 0 \leq \lambda_{k} \leq 1 \text { and } \sum_{k=1}^{N} \lambda_{k}=1
$$

be a set of interpolation parameters, and let

$$
\overrightarrow{\mathbf{A}}=\left\{A_{1}, \ldots, A_{2^{N}}\right\}
$$

be a set of constants. Then we define:

$$
\text { BarycentricInterpolate }(\vec{\Lambda}, \overrightarrow{\mathbf{A}})=\vec{\Lambda} \cdot \overrightarrow{\mathbf{A}}=\sum_{k=1}^{N} \lambda_{k} A_{k}
$$

NOTE: Sometimes in this situation we will use notation
$\mathbf{A}\left(\Lambda_{N}\right)=\mathbf{A}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=$ BarycentricInterpolate $\left(\Lambda_{N}, \mathbf{A}\right)$
NOTE: This is a special case of barycentric Bezier
polynomial interpolations (here, $1^{\text {st }}$ degree)

Interpolation of functions

Fitting of interpolation curves

- The discussion below follows (in part)
G. Farin, Curves and surfaces for computer-aided geometric design, a practical guide, Academic Press, Boston, 1990, chapter 10 and pp 281-284.

1-D Interpolation

Given set of known values $\left\{y_{0}\left(v_{0}\right), \ldots, y_{m}\left(v_{m}\right)\right\}$,
find an approximating polynomial $y \cong P\left(c_{0}, \ldots, c_{N} ; v\right)$

$$
P\left(c_{0}, \ldots, c_{N} ; v\right)=\sum_{k=0}^{N} c_{k} P_{N, k}(v)
$$

Note that many forms of polynomial may be used for the $\mathrm{P}_{\mathrm{N}, \mathrm{K}}(v)$. One common (not very good) choice is the power basis:

$$
P_{N, k}(v)=v^{k}
$$

Better choices are the Bernstein plynomials and the b-spline basis functions, which we will discuss in a moment

1-D Interpolation

Given set of known values $\left\{y_{0}\left(v_{0}\right), \ldots, y_{m}\left(v_{m}\right)\right\}$,
find an approximating polynomial $y \cong P\left(c_{0}, \ldots, c_{N} ; v\right)$

$$
P\left(c_{0}, \ldots, c_{N} ; v\right)=\sum_{k=0}^{N} c_{k} P_{N, k}(v)
$$

To do this, solve:

$$
\left[\begin{array}{ccc}
P_{N, 0}\left(v_{0}\right) & \cdots & P_{N, N}\left(v_{0}\right) \\
\vdots & \ddots & \vdots \\
P_{N, 0}\left(v_{m}\right) & \cdots & P_{N, N}\left(v_{m}\right)
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{N}
\end{array}\right] \cong\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{m}
\end{array}\right]
$$

Bezier and Bernstein Polynomials

$$
\begin{aligned}
P\left(c_{0}, \ldots, c_{N} ; v\right) & =\sum_{k=0}^{N} c_{k}\binom{N}{k}(1-v)^{N-k} v^{N} \\
& =\sum_{k=0}^{N} c_{k} B_{N, k}(v) \\
\text { where } \quad B_{N, k}(v) & =\binom{N}{k}(1-v)^{N-k} v^{k}
\end{aligned}
$$

- Excellent numerical stability for $0<v<1$
- There exist good ways to convert to more conventional power basis

Barycentric Bezier Polynomials

$$
\begin{aligned}
P\left(c_{0}, \ldots, c_{N} ; u, v\right) & =\sum_{k=0}^{N} c_{k}\binom{N}{k} u^{N-k} v^{N} \\
& =\sum_{k=0}^{N} c_{k} B_{N, k}(u, v)
\end{aligned}
$$

where $\quad B_{N, k}(u, v)=\binom{N}{k} u^{N-k} v^{k} \quad u+v=1$

- Excellent numerical stability for $\mathrm{c}<0<1$
- There exist good ways to convert to more conventional power basis

Bezier Curves

Suppose that the coefficients $\overrightarrow{c_{j}}$ are multi-dimensional vectors (e.g., 2D or 3D points). Then the polynomial

$$
P\left(\overrightarrow{c_{0}}, \ldots, \overrightarrow{c_{N}} ; v\right)=\sum_{k=0}^{N} \overrightarrow{c_{k}} B_{N, k}(v)
$$

computed over the range $0 \leq v \leq 1$ generates a Bezier curve with control vertices $\overrightarrow{c_{j}}$.

Bezier Curves: de Casteljau Algorithm

Given coefficients $\overrightarrow{c_{j}}$, Bezier curves can be generated recursively by repeated linear interpolation:

$$
P\left(\overrightarrow{c_{0}}, \ldots, \overrightarrow{c_{N}} ; v\right)=b_{0}^{N}
$$

where
$b_{j}^{0}=\overrightarrow{c_{j}}$
$b_{j}^{k}=(1-v) b_{j}^{k-1}+v b_{j+1}^{k-1}$

Iterative Form of deCasteljau Algorithm

Step 1: $\quad b_{j} \leftarrow c_{j}$ for $0 \leq j \leq N$
Step 2: for $k \leftarrow 1$ step 1 until $k=N$ do

$$
\begin{aligned}
& \text { for } j \leftarrow 0 \text { step } 1 \text { until } j=N-k \text { do } \\
& \qquad b_{j} \leftarrow(1-v) b_{j}+v b_{j+1}
\end{aligned}
$$

Step 3: return b_{0}

Advantages of Bezier Curves

- Numerically very robust
- Many nice mathematical properties
- Smooth
- "Global" (may be viewed as a disadvantage)

B-splines

Given
coefficient values $\overline{\mathbf{C}}=\left\{\vec{c}_{0}, \cdots, \vec{c}_{L+D-1}\right\}$
"knot points" $\overline{\mathbf{u}}=\left\{u_{0}, \cdots, u_{L+2 D-2}\right\}$ with $u_{i} \leq u_{i+1}$
$\mathrm{D}=$ "degree" of desired B-spline
Can define an interpolated curve $P(\overline{\mathbf{C}}, \overline{\mathbf{u}} ; u)$ on $u_{D-1} \leq u<u_{L+D-1}$

Then

$$
P(\overline{\mathbf{C}} ; u)=\sum_{j=0}^{L+D-1} \vec{c}_{j} N_{j}^{D}(u)
$$

where $N_{j}^{D}(u)$ are B-spline basis polynomials (discussed later)

B-Spline Polynomials

Some useful references include

- http://en.wikipedia.org/wiki/B-spline
- http://vision.ucsd.edu/~kbranson/research/bsplines/bsplines.pdf
- http://scholar.lib.vt.edu/theses/available/etd-100699-171723/
- https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/ L-09_BSplines_NURBS.pdf
- http://www.stat.columbia.edu/~ruf/ruf_bspline.pdf

B-spline polynomials \& B-spline basis functions

Given $\overline{\mathbf{C}}, \overline{\mathbf{u}}, \mathrm{D}$ as before

$$
P(\overline{\mathbf{C}}, \overline{\mathbf{u}} ; u)=\sum_{j=0}^{L+D-1} \vec{c}_{j} \quad N_{j}^{D}(u)
$$

where

$$
\begin{aligned}
& N_{j}^{0}(u)= \begin{cases}1 & u_{j-1} \leq u \leq u_{j} \\
0 & \text { Otherwise }\end{cases} \\
& N_{j}^{k}(u)=\frac{u-u_{j-1}}{u_{j+k-1}-u_{j-1}} N_{j}^{k-1}(u)+\frac{u_{j+k}-u}{u_{j+k}-u_{j}} N_{j+1}^{k-1}(u) \text { for } k>0
\end{aligned}
$$

B-Spline Polynomials

For a B-spline polynomial

$$
P(\overline{\mathbf{C}}, \overline{\mathbf{u}} ; t)=\sum_{j=0}^{L+D-1} \vec{c}_{j} N_{j}^{D}(\overline{\mathbf{u}}, t)
$$

the basis functions $N_{j}^{D}(\overline{\mathbf{u}}, t)$ are a function of the degree of the polynomial and the vector $\overline{\mathbf{u}}=\left[u_{0}, \cdots, u_{n}\right]$ of "knot points". The polynomial is "uniform" if the distance between knot points is evenly spaced and "non-uniform" otherwise.

deBoor Algorithm

Given $\mathbf{u}, \mathbf{c}, D$ as before, can evaluate $P(\mathbf{c}, \mathbf{u} ; u)$ recursively as follows:

Step 1: Determine index i such that $u_{i} \leq u<u_{i+1}$
Step 2: Determine multplicity r such that

$$
u_{i-r}=u_{i-r+1}=\cdots=u_{i}
$$

Step 3: Set $\overrightarrow{\mathbf{d}}_{j}^{0}=c_{j}$ for $i-D+1 \leq j \leq i+1$
Step 4: Compute $P(\mathbf{c}, \mathbf{u} ; u)=d_{i+1}^{D-r}$ recursively, where

deBoor Algorithm: Example D=3, r=0

$$
\begin{aligned}
& \overrightarrow{\mathbf{d}}_{\mathrm{j}}^{k}=\frac{u_{j+D-k}-u}{u_{j+D-k}-u_{j-1}} \overrightarrow{\mathbf{d}}_{j-1}^{k-1}+\frac{u-u_{j-1}}{u_{j+D-k}-u_{j-1}} \overrightarrow{\mathbf{d}}_{j}^{k-1}=\frac{\alpha_{j}^{k} \mathbf{d}_{j-1}^{k-1}}{\gamma_{j}^{k}}+\frac{\beta_{j}^{k} \mathbf{d}_{j}^{k-1}}{\gamma_{j}^{k}} \\
& \dot{\mathbf{d}}_{i+1}^{3-0}=\overrightarrow{\mathbf{p}}\left(\left\{\cdots, \overrightarrow{\mathbf{c}}_{i}, \cdots\right\}, 3 ; u\right) \\
& =\left(\alpha_{i+1}^{3} \overrightarrow{\mathbf{d}}_{i}^{2}+\beta_{i+1}^{3} \overrightarrow{\mathrm{~d}}_{i+1}^{2}\right) / \gamma_{i+1}^{3}=\left(\left(u_{i+1}-u\right) \overline{\mathrm{d}}_{i}^{2}+\left(u-u_{i}\right) \overrightarrow{\mathrm{d}}_{i+1}^{2}\right) /\left(u_{i+1}-u_{i}\right) \\
& \overrightarrow{\mathbf{d}}_{i+1}^{2}=\left(\alpha_{i+1}^{2} \overrightarrow{\mathbf{d}}_{i}^{1}+\beta_{i+1}^{2} \overrightarrow{\mathrm{~d}}_{i+1}^{1}\right) / \gamma_{i+1}^{2}=\left(\left(u_{i+2}-u\right) \overrightarrow{\mathbf{d}}_{i}^{1}+\left(u-u_{i}\right) \overrightarrow{\mathbf{d}}_{i+1}^{1}\right) /\left(u_{i+2}-u_{i}\right) \\
& \overrightarrow{\mathbf{d}}_{i}^{2}=\left(\alpha_{i}^{2} \mathbf{d}_{i-1}^{1}+\beta_{i}^{2} \overrightarrow{\mathbf{a}}_{i}^{1}\right) / \gamma_{i}^{2}=\left(\left(u_{i+1}-u\right) \overrightarrow{\mathbf{a}}_{i-1}^{1}+\left(u-u_{i-1}\right) \overrightarrow{\mathbf{d}_{i}^{1}}\right) /\left(u_{i+1}-u_{i-1}\right) \\
& \overrightarrow{\mathbf{d}}_{i+1}^{1}=\left(\alpha_{i+1}^{1} \overrightarrow{\mathrm{~d}}_{i}^{0}+\beta_{i+1}^{1} \overrightarrow{\mathrm{~d}}_{i+1}^{0}\right) / \gamma_{i+1}^{1}=\left(\left(u_{i+3}-u\right) \overline{\mathrm{d}}_{i}^{0}+\left(u-u_{i}\right) \overline{\mathrm{d}}_{i+1}^{0}\right) /\left(u_{i+3}-u_{i}\right) \\
& \overrightarrow{\mathbf{d}}_{i}^{1}=\left(\alpha_{i}^{1} \tilde{\mathrm{~d}}_{i-1}^{0}+\beta_{i}^{1} \mathrm{~d}_{i}^{0}\right) / \gamma_{i}^{1}=\left(\left(u_{i+2}-u\right) \overline{\mathrm{d}}_{i-1}^{0}+\left(u-u_{i-1}\right) \mathrm{d}_{i}^{0}\right) /\left(u_{i+2}-u_{i-1}\right) \\
& \overrightarrow{\mathbf{d}}_{i-1}^{1}=\left(\alpha_{i-1}^{1} \overrightarrow{\mathbf{d}}_{i-2}^{0}+\beta_{i-1}^{1} \overrightarrow{\mathbf{d}}_{i-1}^{0}\right) / \gamma_{i-1}^{1}=\left(\left(u_{i+1}-u\right) \overrightarrow{\mathbf{d}}_{i-2}^{0}+\left(u-u_{i-2}\right) \overrightarrow{\mathbf{d}}_{i-1}^{0}\right) /\left(u_{i+1}-u_{i-2}\right)
\end{aligned}
$$

Uniform B-Spline Polynomials

Third degree uniform B-spline $P(\overline{\mathbf{C}}, \overline{\mathbf{u}} ; t)=\sum_{j} \vec{c}_{j} N_{j}^{2}(\overline{\mathbf{u}}, t)$ with $t_{j}=j$

$$
N_{j}^{3}(\overline{\mathbf{u}}, t)= \begin{cases}\frac{1}{6}(t-j)^{2} & \text { if } \mathrm{j} \leq t<j+1 \\ \frac{1}{6}\left[-3(t-j-1)^{3}+3(t-j-1)^{2}+3(t-j-1)+1\right] & \text { if } \mathrm{j}+1 \leq t<\mathrm{j}+2 \\ \frac{1}{6}\left[3(t-j-1)^{3}-6(t-j-1)^{2}+4\right] & \text { if } \mathrm{j}+2 \leq t<\mathrm{j}+3 \\ \frac{1}{6}[1-(t-j-1)]^{3} & \text { if } \mathrm{j}+3 \leq t<\mathrm{j}+4 \\ 0 & \text { otherwise }\end{cases}
$$

Some advantages of B-splines

- Efficient

- Numerically stable
- Smooth
- Local

2D Interpolation (tensor form)

Consider the 2D polynomial

$$
\begin{aligned}
P(u, v) & =\sum_{i=0}^{m} \sum_{j=0}^{n} c_{i j} A_{i}(u) B_{j}(v) \\
& =\left[A_{0}(u), \cdots, A_{m}(u)\right]\left[\begin{array}{ccc}
c_{00} & \cdots & c_{0 n} \\
\vdots & \ddots & \vdots \\
c_{m 0} & \cdots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
B_{0}(v) \\
\vdots \\
B_{n}(v)
\end{array}\right]
\end{aligned}
$$

where $A_{i}(u)$ and $B_{j}(v)$ can be arbitrary
functions (good choices Bernstein polynomials or
B-Spline basis functions. Suppose that we have samples

$$
\mathbf{y}_{\mathbf{s}}=\mathbf{y}\left(u_{s}, v_{s}\right) \text { for } s=0, \ldots, N_{s}
$$

We want to find an approximating polynomial P.

2D Interpolation: Finding the best fit

Given a set of sample values $\mathbf{y}_{s}\left(u_{s}, v_{s}\right)$ corresponding to 2D coordinates $\left(u_{s}, v_{s}\right)$, left hand side basis functions $\left[A_{0}(u), \cdots, A_{m}(u)\right]$ and right hand side basis functions $\left[B_{0}(v), \cdots, B_{n}(v)\right]$, the goal is to find the matrix \mathbf{C} of coefficients $\mathbf{c}_{i j}$.

To do this, solve the least squares problem

$$
\left[\begin{array}{c}
\vdots \\
\mathbf{y}_{s}\left(u_{s}, v_{s}\right) \\
\vdots
\end{array}\right] \approx\left[\begin{array}{ccccc}
\vdots & \vdots & & \vdots & \\
A_{0}\left(u_{s}\right) B_{0}\left(v_{s}\right) & A_{0}\left(u_{s}\right) B_{1}\left(v_{s}\right) & \cdots & A_{i}\left(u_{s}\right) B_{j}\left(v_{s}\right) & \cdots
\end{array} A_{m}\left(u_{s}\right) B_{n}\left(v_{s}\right)\right] \bullet\left[\begin{array}{c}
\mathbf{c}_{00} \\
\vdots \\
\vdots \\
\mathbf{c}_{01} \\
\vdots \\
\mathbf{c}_{i j} \\
\vdots \\
\mathbf{c}_{m n}
\end{array}\right]
$$

2D Interpolation: Sampling on a regular grid

A common special case arises when the $\left(u_{s}, v_{s}\right)$ form a regular grid. In this case we have $u_{s} \in\left\{u_{0}, \cdots, u_{N_{u}}\right\}$ and $v_{s} \in\left\{v_{0}, \cdots, v_{N_{v}}\right\}$. For each value $v_{j} \in\left\{v_{0}, \cdots, v_{N_{v}}\right\}$ solve the N_{s} row least squares problem

$$
\left[\begin{array}{c}
\vdots \\
\mathbf{y}_{s}\left(u_{s}, v_{j}\right) \\
\vdots
\end{array}\right] \approx\left[\begin{array}{ccc}
\vdots & \cdots & \vdots \\
A_{0}\left(u_{s}\right) & \cdots & A_{m}\left(u_{s}\right) \\
\vdots & \cdots & \vdots
\end{array}\right] \bullet\left[\begin{array}{c}
\mathbf{X}_{j 0} \\
\vdots \\
\mathbf{X}_{j m}
\end{array}\right]
$$

for the unknown m-vector \mathbf{X}_{j}. Then solve m n -variable least squares problems

$$
\left[\begin{array}{c|c|c|c}
\mathbf{X}_{00} & \mathbf{X}_{01} & \cdots & \mathbf{X}_{0 m} \\
\mathbf{X}_{10} & \mathbf{X}_{11} & \cdots & \mathbf{X}_{1 m} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & & \vdots
\end{array}\right] \approx\left[\begin{array}{cccc}
B_{0}\left(v_{0}\right) & B_{1}\left(v_{0}\right) & \cdots & B_{n}\left(v_{0}\right) \\
B_{0}\left(v_{1}\right) & B_{1}\left(v_{1}\right) & \cdots & B_{n}\left(v_{1}\right) \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & & \vdots
\end{array}\right] \bullet\left[\begin{array}{c|c|c|c}
\mathbf{c}_{00} & \mathbf{c}_{10} & \cdots & \mathbf{c}_{m 0} \\
\mathbf{c}_{01} & \mathbf{c}_{11} & \cdots & \mathbf{c}_{m 1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{c}_{0 n} & \mathbf{c}_{1 n} & \cdots & \mathbf{c}_{m n}
\end{array}\right]
$$

for the vectors $\left[\mathbf{c}_{j 0}, \cdots, \mathbf{c}_{j n}\right]$. Note that this latter step requires only 1 SVD or similar matrix computation.

2D Interpolation: Sampling on a regular grid

- There are a number of caveats to the "grid" method on the previous slide. (E.g., you need enough data for each of the least squares problems). But where applicable the method can save computation time since it replaces a number of m and n variable least squares problems for one big $m \times n$ problem
- Note that there is a similar trick that you can play by grouping all the common u_{i} elements together.
- Note that the y's and the c's do not have to be scalar numbers. They can be Vectors, Matrices, or other objects that have appropriate algebraic properties

N -dimensional interpolation

Define

$$
F_{i_{1} \cdots i_{N}}(\overrightarrow{\mathbf{u}})=A_{i_{1}}^{1}\left(u_{1}\right) \cdots A_{i_{N}}^{N}\left(u_{N}\right)
$$

Then solve the least squares problem

$$
\left[\begin{array}{cccc}
& \vdots & & \\
F_{00 \ldots 0}\left(\overrightarrow{\mathbf{u}}_{s}\right) & F_{10 \ldots 0}\left(\overrightarrow{\mathbf{u}}_{s}\right) & \cdots & F_{m_{1} \cdots m_{n}}\left(\overrightarrow{\mathbf{u}}_{s}\right) \\
\vdots & &
\end{array}\right]\left[\begin{array}{c}
c_{00 \ldots 0} \\
c_{10 \ldots 0} \\
\vdots \\
c_{m_{1} \cdots m_{n}}
\end{array}\right] \cong\left[\begin{array}{c}
\vdots \\
\overrightarrow{\mathbf{y}}_{s} \\
\vdots
\end{array}\right]
$$

N -dimensional interpolation

- The methods described earlier generalize naturally to N dimensions.

$$
P(\overrightarrow{\mathbf{u}})=P\left(u_{1}, \cdots, u_{N}\right)=\sum_{i_{i}=0}^{m_{1}} \cdots \sum_{i_{N}=0}^{m_{N}} c_{i_{i} \cdots i_{n}} A_{i_{1}}^{1}\left(u_{1}\right) \cdots A_{i_{N}}^{N}\left(u_{N}\right)
$$

where $A_{i}{ }^{K}(u)$ can be arbitrary functions
(good choices are Bernstein polynomials or B-Spline basis functions). Suppose that we have samples
$\mathbf{y}_{\mathbf{s}}=\mathbf{y}\left(\overline{\mathbf{u}}_{s}\right)$ for $s=0, \ldots, N_{s}$
We want to find coefficients of $c_{i, \cdots i_{n}}$ approximating polynomial P .

Example: 3D Calibration of Distortion

Suppose we want to compute a distortion correction function for a distorted 30 navigational sensor Let
$\overline{\mathbf{p}}_{1}=$ known 3D "ground trath"
$\tilde{\mathbf{q}}_{1}=$ Values returned by navigational sensor
Here we will ponstruct a "tensor form" interpolation polynomial using 5" degree Bemstein polynomials

$$
F_{s,}\left(u_{n}, u_{2}, u_{2}\right)=B_{5 \lambda}\left(u_{1}\right) \dot{B_{0 j}}\left(u_{1}\right) B_{5 x},\left(u_{2}\right)
$$

We need to do the following:

1. Bemstein polyoomials are really designed to work well in the range $0 \leq U \leq 1$, so we need to determine a "bounding box" to scale out " values. l.e., we pick upper and lower limits $\dot{\mathbf{q}}^{n i r}$ and $\overrightarrow{\mathbf{q}}^{\text {is }}$ and compute $\bar{u}_{s}=$ ScaleToBox $\left(\bar{q}_{4}, \bar{q}^{m}, \bar{q}^{m=1}\right)$ where

Scale ToBox($\left.x: x^{n 0} x^{\text {mas }}\right)-\frac{x-x^{\text {min }}}{x^{n+1}-x^{\text {nm }}}$
2. Now, we set up and solve the least squares problem:

42 600.445 Fall 2000; Updated: July 16, 13 Copyright © R. H. Taylor

Example: 3D Calibration of Distortion

$$
\left[\begin{array}{ccc}
& \vdots & \\
F_{000}\left(\overrightarrow{\mathbf{u}}_{s}\right) & \cdots & F_{555}\left(\overrightarrow{\mathbf{u}}_{s}\right) \\
\vdots &
\end{array}\right]\left[\begin{array}{ccc}
c_{000}^{x} & c_{000}^{y} & c_{000}^{z} \\
\vdots & \vdots & \vdots \\
c_{555}^{x} & c_{555}^{y} & c_{555}^{z}
\end{array}\right] \cong\left[\begin{array}{ccc}
& \vdots & \\
p_{s}^{x} & p_{s}^{y} & p_{s}^{z} \\
& \vdots &
\end{array}\right]
$$

Example: 3D Calibration of Distortion

The correction function will then look like this:

$$
\begin{aligned}
& \overrightarrow{\mathbf{p}}=\text { CorrectDistortion }(\overrightarrow{\mathbf{q}}) \\
& \left\{\begin{array}{l}
\overrightarrow{\mathbf{u}}=\operatorname{ScaleToBox}\left(\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{q}}^{\text {min }}, \overrightarrow{\mathbf{q}}^{\text {max }}\right) \\
\quad \text { return } \sum_{i=0}^{5} \sum_{j=0}^{5} \sum_{k=0}^{5} \overrightarrow{\mathbf{c}}_{i, j, k} B_{5, i}\left(u_{x}\right) B_{5, j}\left(u_{y}\right) B_{5, k}\left(u_{z}\right)
\end{array}\right. \\
& \}
\end{aligned}
$$

