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Interpolation and Deformations 
A short cookbook 
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Linear Interpolation 
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Linear Interpolation 
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Linear Interpolation 
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Bilinear Interpolation 
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Bilinear Interpolation 
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Bilinear Interpolation 
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N-linear Interpolation 
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Barycentric Interpolation 
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Barycentric Interpolation 
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Barycentric Interpolation 
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Barycentric Interpolation 
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Interpolation of functions 
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Fitting of interpolation curves 

•  The discussion below follows (in part) 

G. Farin, Curves and surfaces for computer-aided 
geometric design, a practical guide, Academic 
Press, Boston, 1990, chapter 10 and pp 281-284. 



8 

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
15  600.445 Fall 2000; Updated: July 16, 13  

 Copyright © R. H. Taylor 

v

0
1

N,k

,

Note that many forms of polynomial may be used
for the P ( ).  One common (not very good) choice 
is the power basis:
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1-D Interpolation 
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Bezier and Bernstein Polynomials 

•  Excellent numerical stability for 0<v<1 

•  There exist good ways to convert to more 
conventional power basis 
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Barycentric Bezier Polynomials 

•  Excellent numerical stability for c<0<1 

•  There exist good ways to convert to more 
conventional power basis 
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Bezier Curves 
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Bezier Curves: de Casteljau Algorithm 
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Iterative Form of deCasteljau Algorithm 
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Advantages of Bezier Curves 

•  Numerically very robust 

•  Many nice mathematical properties 

•  Smooth 

•  “Global”  (may be viewed as a disadvantage) 
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B-splines 

    

Given 
     coefficient values C = {


c0,,


cL+D−1} 

     "knot points" u = {u0,,uL+2D−2 }  with ui ≤ ui+1

     D = "degree" of desired B-spline
Can define an interpolated curve P(C,u; u) on uD−1 ≤ u < uL+D−1

Then 

P(C;u) =

c j

j=0

L+D−1

∑ Nj
D (u)

where Nj
D (u) are B-spline basis polynomials (discussed later)

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
24  600.445 Fall 2000; Updated: July 16, 13  

 Copyright © R. H. Taylor 

B-Spline Polynomials 

Some useful references include 
•  http://en.wikipedia.org/wiki/B-spline 
•  http://vision.ucsd.edu/~kbranson/research/bsplines/bsplines.pdf 
•  http://scholar.lib.vt.edu/theses/available/etd-100699-171723/ 
•  https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/

L-09_BSplines_NURBS.pdf 
•  http://www.stat.columbia.edu/~ruf/ruf_bspline.pdf 
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B-spline polynomials & B-spline basis functions 

    

Given C,u,D as before

     P(C,u;u) =
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B-Spline Polynomials 

     

For a B-spline polynomial

P(C,u; t) =

c j

j=0

L+D−1

∑ Nj
D (u, t)

the basis functions Nj
D (u, t) are a function of the degree of the polynomial

and the vector u = u0 ,,un⎡⎣ ⎤⎦  of "knot points".   The polynomial is "uniform" if 

the distance between knot points is evenly spaced and "non-uniform" otherwise.
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deBoor Algorithm 

    

Given u, c, D  as before, can evaluate P(c,u;u)
recursively as follows: 

Step 1: Determine index i  such that ui ≤ u < ui+1

Step 2: Determine multplicity r such that 

ui−r = ui−r +1 = = ui

Step 3: Set 

d j

0 = c j  for i − D +1≤ j ≤ i +1

Step 4: Compute P(c,u;u) = di+1
D−r  recursively, where


dj

k =
uj+D−k − u

uj+D−k − uj−1


d j−1

k−1 +
u − uj−1

uj+D−k − uj−1


d j

k−1 =
α j

k d j−1
k−1

γ j
k

+
β j

k d j
k−1

γ j
k

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
28  600.445 Fall 2000; Updated: July 16, 13  

 Copyright © R. H. Taylor 

deBoor Algorithm: Example D=3, r=0 
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Uniform B-Spline Polynomials 

     

Third degree uniform B-spline P(C,u; t) =

c jNj

2 (u, t)
j
∑   with t j = j

Nj
3 (u, t) =

1
6

(t − j )2 if j ≤ t < j +1

1
6

−3 t − j −1( )3
+ 3 t − j −1( )2

+ 3 t − j −1( ) +1⎡
⎣⎢

⎤
⎦⎥

if j+1≤ t < j+ 2

1
6

3 t − j −1( )3
− 6 t − j −1( )2

+ 4⎡
⎣⎢

⎤
⎦⎥

if j+ 2 ≤ t < j+ 3

1
6

1− t − j −1( )⎡⎣ ⎤⎦
3

if j+ 3 ≤ t < j+ 4

0 otherwise

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

http://vision.ucsd.edu/~kbranson/research/bsplines/bsplines.pdf 
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Some advantages of B-splines 

•  Efficient 

•  Numerically stable  

•  Smooth 

•  Local 



16 

Engineering Research Center for Computer Integrated Surgical Systems and Technology 
36  600.445 Fall 2000; Updated: July 16, 13  

 Copyright © R. H. Taylor 

2D Interpolation (tensor form) 

0 0

00 0 0

0

0

Consider the 2D polynomial

( , ) ( ) ( )

( )
[ ( ), , ( )]

( )
where ( ) and ( ) can be arbitrary 
functions (good choices Bernstein polynom

m n

ij i j
i j

n

m

m mn n

i j

P u v c A u B v

c c B v
A u A u

c c B v
A u B v

= =

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑


    


ials or 
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We want to find an approximating polynomial P. 
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2D Interpolation: Finding the best fit 

    

Given a set of sample values ys (us,vs ) corresponding to 2D coordinates 

(us,vs ), left hand side basis functions A0(u),,Am(u)⎡⎣ ⎤⎦  and right hand side 

basis functions B0(v),,Bn(v)⎡⎣ ⎤⎦ , the goal is to find the matrix C of 

coefficients cij .

To do this, solve the least squares problem 
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2D Interpolation: Sampling on a regular grid 
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 nly 1 SVD or

similar matrix computation. 
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2D Interpolation: Sampling on a regular grid 

•  There are a number of caveats to the “grid” method 
on the previous slide.  (E.g., you need enough data 
for each of the least squares problems).  But where 
applicable the method can save computation time 
since it replaces a number of m and n variable least 
squares problems for one big m x n problem 

•  Note that there is a similar trick that you can play by 
grouping all the common ui elements together. 

•  Note that the y’s and the c’s do not have to be scalar 
numbers.  They can be Vectors, Matrices, or other 
objects that have appropriate algebraic properties 
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N-dimensional interpolation 
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N-dimensional interpolation 

•  The methods described earlier generalize naturally 
to N dimensions. 

= =
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where ( ) can be arbitrary functions 
(good choices are Bernstein polynomials or 
B-Spline basis functions).  Suppose that we have samples
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Example: 3D Calibration of Distortion 
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Example: 3D Calibration of Distortion 
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Example: 3D Calibration of Distortion 

The correction function will then look like this: 

=
=
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