Linear Least Squares

Given a linear system $\mathbf{A x}-\mathbf{b}=\mathbf{e}$,

$$
\begin{gathered}
\mathbf{a}_{1} \bullet \mathbf{x}-b_{1}=e_{1} \\
\vdots \\
\mathbf{a}_{i} \bullet \mathbf{x}-b_{i}=e_{i} \\
\vdots \\
\mathbf{a}_{m} \bullet \mathbf{x}-b_{m}=e_{m}
\end{gathered}
$$

We want to minimize the sum of squares of the errors

$$
\min _{\mathbf{x}} \sum_{i} e_{i}^{2}=\mathbf{e}^{T} \mathbf{e}=(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A x}-\mathbf{b})
$$

Sometimes write this as $\mathbf{A x} \cong \mathbf{b}$

Linear Least Squares

- Many methods for $\mathbf{A x} \approx \mathbf{b}$
- One simple one is to compute

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & \approx \mathbf{b} \\
\mathbf{A}^{\top} \mathbf{A} \mathbf{x} & \approx \mathbf{A}^{\top} \mathbf{b} \\
\mathbf{x} & \approx\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}
\end{aligned}
$$

- Better methods based on orthogonal transformations exist
- These methods are available in standard math libraries
- A short review follows

Orthogonal Transformations

The key property is:

$$
\mathbf{Q}^{-1}=\mathbf{Q}^{T}
$$

Some implications of this are as follows

$$
\left.\left.\begin{array}{l}
\text { if } \quad \mathbf{Q}=\left[\begin{array}{lll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \cdots
\end{array} \mathbf{q}_{n}\right.
\end{array}\right]\right\}
$$

General Approach

The discussion below generally follows the development in D. Lawson and R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974
However, similar discussions may be found in many textbooks.
Given the problem

$$
\min \|\mathbf{A} x-\mathbf{b}\|
$$

Observe than for any orthogonal matrix \mathbf{Q}

$$
\|\mathbf{A} x-\mathbf{b}\|=\|\mathbf{Q}(\mathbf{A} x-\mathbf{b})\|=\|\mathbf{Q} \mathbf{A} x-\mathbf{Q} \mathbf{b}\|
$$

Theorem (from Lawson \& Hanson pp 5-6)

and define $\tilde{\mathbf{y}}_{1}$ to be the unique solution of

$$
\mathbf{R}_{11} \mathbf{y}_{1}=\mathbf{g}_{1}
$$

Theorem (from Lawson \& Hanson pp 5-6)

Then ...

1) All solutions to the problem of minimizing $\|\mathbf{A x}-\mathbf{b}\|$ are of the form

$$
\hat{\mathbf{x}}=\mathbf{K}\left[\begin{array}{l}
\tilde{\mathbf{y}}_{1} \\
\mathbf{y}_{2}
\end{array}\right] \text { where } \mathbf{y}_{2} \text { is arbitrary }
$$

2) Any such $\hat{\mathbf{x}}$ produces the same residual vector \mathbf{r} satisfying

$$
\mathbf{r}=\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}=\mathbf{H}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{g}_{2}
\end{array}\right]
$$

3) The norm of r satisfies

$$
\|\mathbf{r}\|=\|\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}\|=\left\|\mathbf{g}_{2}\right\|
$$

4) The unique solution of minimum length is

$$
\tilde{\mathbf{x}}=\mathbf{K}\left[\begin{array}{c}
\tilde{\mathbf{y}}_{1} \\
\mathbf{0}
\end{array}\right]
$$

600. 445 Fall 2012

Copyright © R. H. Taylor

Householder Decomposition

One method uses repeated Householder transformations to produce an upper triangular matrix \mathbf{R}.

$$
\mathbf{H}^{\top} \mathbf{A K}=\mathbf{R}=\left[\begin{array}{cc}
\mathbf{R}_{11} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ccccccc}
r_{11} & r_{12} & \cdots & r_{1 k} & 0 & \cdots & 0 \\
0 & r_{22} & \ddots & \vdots & \vdots & \ddots & \vdots \\
\vdots & & \ddots & r_{k-1, k} & \vdots & & \vdots \\
0 & \cdots & 0 & r_{k k} & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

where $\mathbf{H}^{\top}=\mathbf{H}_{k-1}^{\top} \cdots \mathbf{H}_{2}^{\top} \mathbf{H}_{1}^{\top}$ is a product of Householder transformations and $\mathbf{K}=\mathbf{K}_{1} \mathbf{K}_{2} \cdots \mathbf{K}_{p}$ is a series of permutations, if needed, to avoid
division by 0 . Then, we solve the problem $\mathbf{A x} \approx \mathbf{b}$ by solving $\mathbf{R}_{11} \tilde{\mathbf{y}}_{1}=\mathbf{g}_{1}$ and forming $\tilde{\mathbf{x}}=\mathbf{K}\left[\begin{array}{c}\tilde{\mathbf{y}}_{1} \\ \mathbf{0}\end{array}\right]$ as outlined before.
600. 445 Fall 2012

Copyright © R. H. Taylor

Singular Value Decomposition

- Developed by Golub, et al in late 1960's
- Commonly available in mathematical libraries
- E.g.,
- MATLAB
- IMSL
- Numerical Recipes (Wm. Press, et. al., Cambridge Press)
- CISST ERC Math Library

Singular Value Decomposition

Given an arbitrary m by n matrix A, there exist orthogonal matrices \mathbf{U}, \mathbf{V} and a diagonal matrix \mathbf{S} that:

$$
\begin{array}{ll}
\mathbf{A}_{m \times n}=\mathbf{U}_{m \times m}\left[\begin{array}{c}
\mathbf{S}_{n \times n} \\
\mathbf{0}_{(m-n) \times n}
\end{array}\right] \mathbf{V}_{n \times n}^{\top} & \text { for } m \geq n \\
\text { or } & \\
\mathbf{A}_{m \times n}=\mathbf{U}_{m \times m}\left[\begin{array}{lll}
\mathbf{S}_{n \times n} & \left.\mathbf{0}_{(m \times(n-m)}\right]
\end{array} \mathbf{V}_{n \times n}^{\top}\right. & \text { for } m \leq n
\end{array}
$$

SVD Least Squares

$$
\begin{aligned}
& \mathbf{A}_{m \times n} \mathbf{x} \approx \mathbf{b} \\
& \mathbf{U}_{m \times m}\left[\begin{array}{c}
\mathbf{S}_{n \times n} \\
\mathbf{0}_{(m-n) \times n}
\end{array}\right] \mathbf{V}_{n \times n}^{\top} \mathbf{x}=\mathbf{b} \\
& {\left[\begin{array}{c}
\mathbf{S}_{n \times n} \\
\mathbf{0}_{(m-n \times n}
\end{array}\right] \mathbf{y}=\mathbf{U}_{m \times m}{ }^{\top} \mathbf{b} \quad \text { where } \mathbf{y}=\mathbf{V}^{\top} \mathbf{x} }
\end{aligned}
$$

Solve this for \mathbf{y} (trivial, since \mathbf{S} is diagonal), then compute

$$
\mathbf{V} \mathbf{y}=\mathbf{V} \mathbf{V}^{T} \mathbf{x}=\mathbf{x}
$$

Least squares adjustment

Given a vector function $\overrightarrow{\mathbf{G}}(\overrightarrow{\mathbf{q}} ; \overrightarrow{\mathbf{u}})$ of parameters $\overrightarrow{\mathbf{q}}$ and experimental variables $\overrightarrow{\mathbf{u}}$, together with a set of observations

$$
\overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{G}}\left(\overrightarrow{\mathbf{q}} ; \overrightarrow{\mathbf{u}}_{k}\right)
$$

and an initial guess $\overrightarrow{\mathbf{q}}_{0}$ of the values of $\overrightarrow{\mathbf{q}}$, we wish to find a better estimate of $\overrightarrow{\mathbf{q}}$.

Least Squares Adjustment

Step $0 j \leftarrow 0$;
Step 1 Compute $\vec{\varepsilon}_{\mathrm{k}} \leftarrow \overrightarrow{\mathbf{v}}_{k}-\overrightarrow{\mathbf{G}}\left(\overrightarrow{\mathbf{q}} ; \overrightarrow{\mathbf{u}}_{k}\right) ; \overrightarrow{\mathrm{E}}_{\mathrm{j}} \leftarrow\left[\vec{\varepsilon}_{1}, \cdots, \vec{\varepsilon}_{N}\right]^{\top}$
Step 2 If $\left\|\overrightarrow{\mathrm{E}}_{\mathrm{j}}\right\|$ is small or some other convergence criterion is met, then stop. Otherwise go on to Step 3.
Step 3 Solve the least squares problem

$$
\begin{aligned}
& {\left[\begin{array}{c}
\vdots \\
\mathbf{J}_{G}\left(\overrightarrow{\mathbf{q}}_{j}, \overrightarrow{\mathbf{u}}_{k}\right) \\
\vdots
\end{array}\right] \bullet \Delta \overrightarrow{\mathbf{q}} \approx\left[\begin{array}{c}
\vdots \\
\vdots
\end{array}\right]} \\
& \text { for } \Delta \overrightarrow{\mathbf{q}} \text {. }
\end{aligned}
$$

Step 4 Set $\overrightarrow{\mathbf{q}}_{j+1} \leftarrow \overrightarrow{\mathbf{q}}_{j}+\Delta \overrightarrow{\mathbf{q}} ; j \leftarrow j+1$; Go back to Step 1 .

