Registration

600.445 Computer-Integrated Surgery

Russell H. Taylor

What needs registering?

- Preoperative Data
- 2D \& 3D medical images
- Models
- Preoperative positions
- Intraoperative Data
- 2D \& 3D medical images
- Models
- Intraoperative positioning information
- The Patient

Framework for feature-based methods

- Definition of coordinate system relations
- Segmentation of reference features
- Definition of disparity function between features
- Optimization of disparity function

Taxonomy of methods

- Feature-based
- Intensity-based

Definitions

Overall Goal: Given two coordinate systems,

$$
\operatorname{Ref}_{\mathrm{A}} \& \operatorname{Ref}_{\mathrm{B}}
$$

and coordinates

$$
\mathbf{x}_{\mathrm{A}} \& \mathrm{x}_{\mathrm{B}}
$$

associated with homologous features in the two coordinate systems, the general goal is to determine a transformation function T that transforms one set of coordinates into the other:

$$
\mathbf{x}_{\mathrm{A}}=\mathbf{T}\left(\mathbf{x}_{\mathrm{B}}\right)
$$

Definitions

- Rigid Transformation: Essentially, our old friends 2D \& 3D coordinate transformations:

$$
T(x)=R \cdot x+p
$$

The key assumption is that deformations may be neglected.

- Elastic Transformation: Cases where must take deformations into account. Many different flavors, depending on what is being deformed

Uses of Rigid Transformations

- Register (approximately) multiple image data sets
- Transfer coordinates from preoperative data to reality (especially in orthopaedics \& neurosurgery)
- Initialize non-rigid transformations

Uses of Elastic Transformations

- Register different patients to common data base (e.g., for statistical analysis)
- Overlay atlas information onto patient data
- Study time-varying deformations
- Assist segmentation

Typical Features

- Point fiducials
- Point anatomical landmarks
- Ridge curves
- Contours
- Surfaces
- Line fiducials

Distance Functions

Given two (possibly distributed) features Fi and Fj, need to define a distance metric distance (Fi, Fj) between them. Some choices include:

- Minimum distance between points
- Maximum of minimum distances
- Area between line features
- Volume between surface features
- Area between point and line
- etc.

Disparity Functions Between Feature Sets

 ılasic：：incluik：

$$
\begin{aligned}
& \text { 1) } \operatorname{F} \text { 以 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 今 }
\end{aligned}
$$

Optimization

－Global vs Local
－Numerical vs Direct Solution
－Local Minima

Find best rigid transformation!

Sampled 3D data to surface models

Ourliue:

 ro asuricec fowne F.

Examples

 -

A typical surface registration problem

What the computer knows

Find homologous points \& pull!

Find homologous points \& pull!

Find homologous points \& pull!

Iterate this until converge

Find new point pairs every iteration

Key challenge is finding point pairs efficiently.

Head in Hat Algorithm

$$
D \cdots \Gamma_{1}\left[\mathcal{M}_{1} \mathcal{F}_{1,} \cdot \boldsymbol{T} \cdot \mathrm{~F}_{1} \cdot{ }^{\prime}\right.
$$

 for ${ }^{5}$.

Head in Hat Algorithm

Dofinition of $\mathrm{d}_{\mathrm{s}}, F_{\mathrm{r}}, \mathrm{f}_{\mathrm{i}} \mathrm{i}$

Head-in-hat algorithm: step1

Head-in-hat algorithm: step 2

Head-in-hat algorithm: step 3

Head in Hat Algorithm

- Strengths
- Moderately straightforward to implement
- Slow step is intersecting rays with surface model
- Works reasonably well for original purpose (registration of skin of head) if have adequate initial guess
- Weaknesses
- Local minima
- Assumptions behind use of centroid
- Requires good initial guess and close matches during convergence

Minimizing Rigid Registration Errors

Typically, given a set of points $\left\{\mathbf{a}_{\mathrm{i}}\right\}$ in one coordinate system and another set of points $\left\{\mathbf{b}_{i}\right\}$ in a second coordinate system Goal is to find $[\mathbf{R}, \mathbf{p}]$ that minimizes

$$
\eta=\sum_{i} \mathbf{e}_{i} \bullet \mathbf{e}_{i}
$$

where

$$
\mathbf{e}_{i}=\left(\mathbf{R} \bullet \mathbf{a}_{i}+\mathbf{p}\right)-\mathbf{b}_{i}
$$

This is tricky, because of \mathbf{R}.

Minimizing Rigid Registration Errors

Step 1: Compute

$$
\begin{array}{ll}
\overline{\mathbf{a}}=\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{a}}_{i} & \overline{\mathbf{b}}=\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{b}}_{i} \\
\tilde{\mathbf{a}}_{i}=\overrightarrow{\mathbf{a}}_{i}-\overline{\mathbf{a}} & \tilde{\mathbf{b}}_{i}=\overrightarrow{\mathbf{b}}_{i}-\overline{\mathbf{b}}
\end{array}
$$

Step 2: Find \mathbf{R} that minimizes

$$
\sum_{i}\left(\mathbf{R} \cdot \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Find $\overrightarrow{\mathbf{p}}$

$$
\overrightarrow{\mathbf{p}}=\overline{\mathbf{b}}-\mathbf{R} \cdot \overline{\mathbf{a}}
$$

Step 4: Desired transformation is
$\mathbf{F}=\operatorname{Frame}(\mathbf{R}, \overrightarrow{\mathbf{p}})$

Solving for R: iteration method

Given $\left\{\cdots,\left(\tilde{\mathbf{a}}_{i}, \tilde{\mathbf{b}}_{i}\right), \cdots\right\}$, want to find $\mathbf{R}=\arg \min \sum_{i}\left(\mathbf{R} \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right)$

Step 0: Make an initial guess \mathbf{R}_{0}
Step 1: Given \mathbf{R}_{k}, compute $\breve{\mathbf{b}}_{i}=\mathbf{R}_{k}{ }^{-1} \tilde{\mathbf{b}}_{i}$
Step 2: Compute $\Delta \mathbf{R}$ that minimizes

$$
\sum_{i}\left(\Delta \mathbf{R} \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Set $\mathbf{R}_{k+1}=\mathbf{R}_{k} \Delta \mathbf{R}$
Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

Iterative method: Solving for ΔR

Approximate $\Delta \mathbf{R}$ as $(\mathbf{I}+\operatorname{skew}(\bar{\alpha}))$. I.e.,
$\Delta \mathbf{R} \bullet \mathbf{v} \approx \mathbf{v}+\bar{\alpha} \times \mathbf{v}$
for any vector \mathbf{v}. Then, our least squares problem becomes

$$
\min _{\Delta \mathbf{R}} \sum_{i}\left(\Delta \mathbf{R} \bullet \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2} \approx \min _{\bar{\alpha}} \sum_{i}\left(\tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}+\bar{\alpha} \times \tilde{\mathbf{a}}_{i}\right)^{2}
$$

This is linear least squares problem in $\bar{\alpha}$.

Then compute $\Delta \mathbf{R}(\bar{\alpha})$.

Direct Techniques to solve for R

- Method due to K. Arun, et. al., IEEE PAMI, Vol 9, no 5, pp 698-700, Sept 1987

Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{lll}
\bar{a}_{i, x} \bar{b}_{i, x} & \bar{a}_{i, x} \bar{b}_{i, y} & \bar{a}_{i, x} \bar{b}_{i, z} \\
\bar{a}_{i, y} \bar{b}_{i, x} & \bar{a}_{i, y} \bar{b}_{i, y} & \bar{a}_{i, y} \bar{b}_{i, z} \\
\bar{a}_{i, z} \bar{b}_{i, x} & \bar{a}_{i, z} \bar{b}_{i, y} & \bar{a}_{i, z} \bar{b}_{i, z}
\end{array}\right]
$$

Step 2: Compute the SVD of $\mathbf{H}=\mathbf{U S V}^{\mathbf{t}}$
Step 3: $\mathbf{R}=\mathbf{V U}^{\mathbf{t}}$
Step 4: Verify $\operatorname{Det}(\mathbf{R})=1$. If not, then algorithm may fail.

- Failure is rare, and mostly fixable. The paper has details.

Quarternion Technique to solve for R

- B.K.P. Horn, "Closed form solution of absolute orientation using unit quaternions", J. Opt. Soc. America, A vol. 4, no. 4, pp 629-642, Apr. 1987.
- Method described as reported in Besl and McKay, "A method for registration of 3D shapes", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, February 1992.
- Solves a 4×4 eigenvalue problem to find a unit quaternion corresponding to the rotation
- This quaternion may be converted in closed form to get a more conventional rotation matrix

Digression: quaternions

Invented by Hamilton as a way to express the ratio of vectors. Can be thought of as

4 elements: $\quad \mathbf{q}=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$
scalar \& vector:
$\mathbf{q}=s+\overrightarrow{\mathbf{v}}=[s, \overrightarrow{\mathbf{v}}]$
$\mathbf{q}=q_{0}+q_{1} \overrightarrow{\mathbf{i}}+q_{2} \overrightarrow{\mathbf{j}}+q_{3} \overrightarrow{\mathbf{k}}$
Properties:
Linearity: $\quad \lambda \mathbf{q}_{1}+\mu \overrightarrow{\mathbf{q}}_{2}=\left[\lambda s_{1}+\mu s_{2}, \lambda \overrightarrow{\mathbf{v}}_{1}+\mu \overrightarrow{\mathbf{v}}_{2}\right]$
Conjugate: $\quad \mathbf{q}^{*}=s-\overrightarrow{\mathbf{v}}=[s,-\overrightarrow{\mathbf{v}}]$
Product: $\quad \mathbf{q}_{1} \circ \mathbf{q}_{2}=\left[s_{1} s_{2}-\overrightarrow{\mathbf{v}}_{1} \bullet \overrightarrow{\mathbf{v}}_{2}, s_{1} \overrightarrow{\mathbf{v}}_{2}+s_{2} \overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{v}}_{1} \times \overrightarrow{\mathbf{v}}_{2}\right]$
Transform vector: $\quad \mathbf{q} \circ \overrightarrow{\mathbf{p}}=\mathbf{q} \circ[0, \overrightarrow{\mathbf{p}}] \circ \mathbf{q}^{*}$
Norm: $\quad\|\mathbf{q}\|=\sqrt{s^{2}+\overrightarrow{\mathbf{v}} \bullet \overrightarrow{\mathbf{v}}}=\sqrt{q_{0}{ }^{2}+q_{1}{ }^{2}+q_{2}{ }^{2}+q_{3}{ }^{2}}$

Digression continued: unit quaternions

We can associate a rotation by angle θ about an axis $\overrightarrow{\mathbf{n}}$ with the unit quaternion:

$$
\operatorname{Rot}(\overrightarrow{\mathbf{n}}, \theta) \Leftrightarrow\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]
$$

Exercise: Demonstrate this relationship. I.e., show

$$
\operatorname{Rot}\left((\overrightarrow{\mathbf{n}}, \theta) \cdot \overrightarrow{\mathbf{p}}=\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right] \circ[0, \overrightarrow{\mathbf{p}}] \circ\left[\cos \frac{\theta}{2},-\sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]\right.
$$

Rotation matrix from unit quaternion

$$
\begin{aligned}
\mathbf{q} & =\left[q_{0}, q_{1}, q_{2}, q_{3}\right] ;\|\mathbf{q}\|=1 \\
\mathbf{R}(\mathbf{q}) & =\left[\begin{array}{ccc}
q_{0}{ }^{2}+q_{1}{ }^{2}-q_{2}{ }^{3}-q_{3}{ }^{3} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}{ }^{2}-q_{1}{ }^{2}+q_{2}{ }^{3}-q_{3}{ }^{3} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}{ }^{2}-q_{1}{ }^{2}-q_{2}{ }^{3}+q_{3}{ }^{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Unit quaternion from rotation matrix } \\
& \mathbf{R}(\mathbf{q})=\left[\begin{array}{lll}
r_{x x} & r_{y x} & r_{z x} \\
r_{x y} & r_{y y} & r_{z y} \\
r_{x z} & r_{y z} & r_{z z}
\end{array}\right] ; \quad \begin{array}{l}
a_{0}=1+r_{x x}+r_{y y}+r_{z z} ; a_{1}=1+r_{x x}-r_{y y}-r_{z z} \\
a_{2}=1-r_{x x}+r_{y y}-r_{z z} ; a_{3}=1-r_{x x}-r_{y y}+r_{z z}
\end{array} \\
& \begin{array}{|l|l|l|l|}
a_{0}=\max \left\{a_{k}\right\} & a_{1}=\max \left\{a_{k}\right\} & a_{2}=\max \left\{a_{k}\right\} & a_{3}=\max \left\{a_{k}\right\} \\
q_{0}=\frac{\sqrt{a_{0}}}{2} & q_{0}=\frac{r_{y z}-r_{z y}}{4 q_{1}} & q_{0}=\frac{r_{z x}-r_{x z}}{4 q_{2}} & q_{0}=\frac{r_{x y}-r_{y x}}{4 q_{3}} \\
q_{1}=\frac{r_{x y}-r_{y x}}{4 q_{0}} & q_{1}=\frac{\sqrt{a_{1}}}{2} & q_{1}=\frac{r_{x y}+r_{y x}}{4 q_{2}} & q_{1}=\frac{r_{x z}+r_{z x}}{4 q_{3}} \\
q_{2}=\frac{r_{z x}-r_{x z}}{4 q_{0}} \\
q_{3}=\frac{r_{y z}-r_{z y}}{4 q_{0}} & q_{2}=\frac{r_{x y}+r_{y x}}{4 q_{1}} & q_{2}=\frac{\sqrt{a_{2}}}{2} & q_{2}=\frac{r_{y z}+r_{z y}}{4 q_{3}} \\
4 q_{z x} & q_{3}=\frac{r_{y z}+r_{z y}}{4 q_{2}} & q_{3}=\frac{\sqrt{a_{3}}}{2} \\
\hline
\end{array}
\end{aligned}
$$

Quaternion method for R

Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{lll}
\bar{a}_{i, x} \bar{b}_{i, x} & \bar{a}_{i, x} \bar{b}_{i, y} & \bar{a}_{i, x} \bar{x}_{i, z} \\
\bar{a}_{i, y} \bar{b}_{i, x} & \bar{a}_{i, y} \bar{b}_{i, y} & \bar{a}_{i, z} \bar{b}_{\bar{i}, z} \\
\bar{a}_{i, z} \bar{b}_{i, x} & \bar{a}_{i, z} \bar{b}_{i, y} & \bar{a}_{i, z} \bar{b}_{i, z}
\end{array}\right]
$$

Step 2: Compute

$$
\mathbf{G}=\left[\begin{array}{cc}
\operatorname{trace}(\mathbf{H}) & \Delta^{T} \\
\Delta & \mathbf{H}+\mathbf{H}^{T}-\operatorname{trace}(\mathbf{H}) \mathbf{I}
\end{array}\right]
$$

$$
\text { where } \Delta^{T}=\left[\begin{array}{lll}
\mathbf{H}_{2,3}-\mathbf{H}_{3,2} & \mathbf{H}_{3,1}-\mathbf{H}_{1,3} & \mathbf{H}_{1,2}-\mathbf{H}_{2,1}
\end{array}\right]
$$

Step 3: Compute eigen value decomposition of \mathbf{G} $\operatorname{diag}(\bar{\lambda})=\mathbf{Q}^{T} \mathbf{G} \mathbf{Q}$
Step 4: The eigenvector $\mathbf{Q}_{k}=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$ corresponding to the largest eigenvalue λ_{k} is a unit quaternion corresponding to the rotation.

Iterative Closest Point

- Surt mion an inlial gless: \mathbf{T}_{1}, for \mathbf{T}.
- At itcresini d
 $v_{!} \in F_{E}$ thèl is clowent t.is ' $\mathbf{I}_{\dot{k}}-\mathrm{E}_{\boldsymbol{i}}$.

$$
D_{k+1}:=\sum_{i}!\left|\mathbf{v}_{2} \quad \mathbf{T}_{i, 1} \cdot \mathbf{f}_{i}\right\rangle \|^{?}
$$

- Bhyciral Analome

Iterative Closest Point: step 3

Iterative Closest Point: step 2 interation 2

Iterative Closest Point: step 3 interation 2

Iterative Closest Point: step 2 interation 3

Iterative Closest Point: step 3 interation 3

Iterative Closest Point: Discussion

- Minimization step can be fast
- Crucially requires fast finding of nearest points
- Local minima still an issue
- Data overlap still an issue

Outline of a practical ICP code

Given

1. Surface model M consisting of triangles $\left\{m_{i}\right\}$
2. Set of points $Q=\left\{\overrightarrow{\mathbf{q}}_{1}, \cdots, \overrightarrow{\mathbf{q}}_{N}\right\}$ known to be on M.
3. Initial guess \mathbf{F}_{0} for transformation \mathbf{F}_{0} such that the points $\mathbf{F} \cdot \overrightarrow{\mathbf{q}}_{k}$ lie on M.
4. Initial threshold η_{0} for match closeness

Outline of a practical ICP code

Temporary variables

n	Iteration number		
$\mathbf{F}_{n}=[\mathbf{R}, \stackrel{\rightharpoonup}{\mathbf{p}}]$	Current estimate of transformation		
η_{n}	Current match distance threshold		
$\mathrm{C}=\left\{\cdots, \overrightarrow{\mathbf{c}}_{k}, \cdots\right\}$	Closest points on M to Q		
$\mathrm{D}=\left\{\cdots, d_{k}, \cdots\right\}$	Distances $\mathrm{d}_{\mathrm{k}}=\left\\|\overrightarrow{\mathbf{c}}_{k}-\mathbf{F}_{n} \cdot \overrightarrow{\mathbf{q}}_{k}\right\\|$		
$\mathrm{I}=\left\{\cdots, i_{k}, \cdots\right\}$	Indices of triangles m$i_{i_{k}}$ corresp. to $\overrightarrow{\mathbf{c}}_{k}$		
$\mathrm{~A}=\left\{\cdots, \overrightarrow{\mathbf{a}}_{k}, \cdots\right\}$	Subset of Q with valid matches		
$\mathrm{B}=\left\{\cdots, \overrightarrow{\mathbf{b}}_{k}, \cdots\right\}$	Points on Mcorresponding to A		
$\mathrm{E}=\left\{\cdots, \overrightarrow{\mathbf{e}}_{k}, \cdots\right\}$	Residual errors $\overrightarrow{\mathbf{b}}_{k}-\mathbf{F} \cdot \overrightarrow{\mathbf{a}}_{k}$		
$\sigma_{n},\left(\varepsilon_{\text {max }}\right)_{n}, \bar{\varepsilon}_{n}$	$\frac{\sum_{k} \overrightarrow{\mathbf{e}}_{k} \cdot \overrightarrow{\mathbf{e}}_{k}}{\text { NumElts }(\mathrm{E})} ; \max _{\mathrm{k}} \sqrt{\overrightarrow{\mathbf{e}}_{k} \cdot \overrightarrow{\mathbf{e}}_{k}} ; \frac{\sum_{\mathrm{k}} \sqrt{\mathbf{e}_{k} \cdot \overrightarrow{\mathbf{e}}_{k}}}{\text { NumElts }(\mathrm{E})}$		

Outline of a practical ICP code

Step 0 : (initialization)

Input surface model M and points Q .
Build an appropriate data structure (e.g., octree, $k D$ tree) T to facilitate finding the closest point matching search.
$n \leftarrow 0$
$I \leftarrow\{\cdots, 1, \cdots\}$
$C \leftarrow\left\{\cdots\right.$, point on $\left.m_{1}, \cdots\right\}$
$\mathrm{D} \leftarrow\left\{\cdots,\left\|\overrightarrow{\mathbf{c}}_{k}-\mathbf{F}_{0} \cdot \overrightarrow{\mathbf{q}}_{k}\right\|, \cdots\right\}$

> Outline of a practical ICP code Step 1: (matching) A $\leftarrow \varnothing ; \mathrm{B} \leftarrow \varnothing$ For $k \leftarrow 1$ step 1 to N do begin $\quad\left[\overrightarrow{\mathbf{c}}_{k}, i_{k}, d_{k}\right] \leftarrow$ FindClosestPoint $\left(\mathbf{F}_{n} \cdot \overrightarrow{\mathbf{q}}_{k}, i_{k}, d_{k}, \mathrm{~T}\right)$; // Note: develop first with simple // \quad search. Later make more $\quad / / \quad$ sophisticated, using T

Outline of a practical ICP code

Step 2 : (transformation update)

$n \leftarrow n+1$
$\mathbf{F}_{n} \leftarrow$ FindBestRigidTransformation(A,B)

$$
\sigma_{n} \leftarrow \frac{\sqrt{\sum_{k} \overrightarrow{\mathbf{e}}_{\mathbf{e}} \cdot \overrightarrow{\mathbf{e}}_{k}}}{\operatorname{NumElts(E)}} ; \quad\left(\varepsilon_{\max }\right)_{n} \leftarrow \max _{k} \sqrt{\overrightarrow{\mathbf{e}}_{k} \cdot \overrightarrow{\mathbf{e}}_{k}} ; \bar{\varepsilon}_{n} \leftarrow \frac{\sum_{\mathrm{k}} \sqrt{\mathbf{e}_{\mathrm{e}} \cdot \overrightarrow{\mathbf{e}}_{k}}}{\operatorname{NumElts(E)}}
$$

Step 3 : (adjustment)
Compute η_{n} from $\left\{\eta_{0}, \cdots, \eta_{n-1}\right\} / /$ see notes next page // May also update \mathbf{F}_{n} from $\left\{\mathbf{F}_{0}, \cdots, \mathbf{F}_{n}\right\}$ (see Besl \& McKay) Step 4 : (iteration)
if TerminationTest $\left(\left\{\sigma_{0}, \cdots, \sigma_{n}\right\},\left\{\left(\varepsilon_{\max }\right)_{0}, \cdots,\left(\varepsilon_{\max }\right)_{n},\left\{\bar{\varepsilon}_{0}, \cdots, \bar{\varepsilon}_{n}\right\}\right\}\right)$ then stop. Otherwise, go back to step $1 / /$ see notes
Copyright © R. Taylor 2004-2011

Outline of practical ICP code

Threshold η_{n} update

The threshold η_{n} can be used to restrict the influence of clearly wrong matches on the computation of \mathbf{F}_{n}.
Generally, it should start at a fairly large value and then decrease after a few iterations. One not unreasonable value might be something like $3(\bar{\varepsilon})_{n}$. If the number of valid matches begins to fall significantly, one can increase it adaptively. Too tight a bound may encourage false minima

Also, if the mesh is incomplete, it may be advantageous to exclude any matches with triangles at the edge of the mesh.

Copyright © R. Taylor 2004-2011

Outline of practical ICP code

Termination test

There are no hard and fast rules for deciding when to terminate the procedure. One criterion might be to stop when $\sigma_{n}, \bar{\varepsilon}_{\mathrm{n}}$ and/or $\left(\varepsilon_{\max }\right)_{n}$ are less than desired thresholds and $\gamma \leq \bar{\varepsilon}_{\mathrm{n}} / \bar{\varepsilon}_{\mathrm{n}-1} \leq 1$ for some value γ (e.g., $\gamma \cong .95$) for several iterations.

Distance Maps

- Many authors
- Somewhat related to ICP
- Basic idea is to precompute the distance to the surface for a dense sampling of the volume.
- Then use the gradient of the distance map to compute an incremental motion that reduces the sum of the distances of all the moving points to the surface.
- Then iterate

Distance Maps (Continued)

 1) $)^{\circ}$ [ucinite: \mathbf{v}.

 I_{i}.
 ϑ
3. Fisumater do form tio d_{i}, e.g, by trilitear inloerFoblaticin

Distance Maps: Iteration Step

 :

$$
\left.\sum_{i}\left[i \Delta \mathbf{T}_{p_{1}}-\mathbf{p}\right\} \cdot \nabla d, d_{s}\left(\lambda_{1}, v_{1}\right)\right]
$$

rir

$$
\because-\left(\Delta \boldsymbol{T}_{j} \cdots p_{i} j \cdot \nabla d l_{s} \lambda_{i}, p_{j}\right)
$$

3. Yenalu: $\boldsymbol{T} \leftarrow \Delta T \bullet T$

A contour-based 2D-3D method ...

Gueziec et al., 1998

Given

- 3D surface model of an anatomic structure
- Multiple 2D x-ray projection images taken at known poses relative to some coordinate system C
- Initial estimate of the pose F of the anatomic object relative to the x-ray imaging coordinate system C

Goal

- Compute an accurate value for \mathbf{F}

A countour-based 2D-3D method ...
 Gueziec et al., 1998

Step 0: Extract contours from x-ray images and compute corresponding lines between source and detector

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images fo Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol 17, pp. 715-728, 1998.

A countour-based 2D-3D method ...

Step 1: Given the current estimate for
F = [R,t] , compute the apparent projection contours of the model for each viewing direction.

Step 2: For each x-ray path line line $\mathbf{L}_{\mathbf{i}}$, identify the closest point $\mathbf{p}_{\mathbf{i}}$ on an apparent projection contour. This will give a set of points on the body surface to be moved toward the corresponding x-ray lines

A countour-based 2D-3D method ...
 Gueziec et al., 1998

Note: It is convenient to use the x-ray source position (i.e., the center of convergence for a bundle of x-ray projection lines) as the value for $\overrightarrow{\mathbf{c}}$.

$$
\begin{aligned}
& \text { A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy- } \\
& \text { Based Registration of CT-Scan and Intraoperative X-Ray Images for } \\
& \text { Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. } \\
& \text { 17, pp. } 715-728,1998 \text {. }
\end{aligned}
$$

A countour-based 2D-3D method ...

Gueziec et al., 1998

Step 3: Solve an optimization problem to compute a value of F that minimizes the distance between the \mathbf{p}_{i} and the L_{i}.

$$
\begin{aligned}
\min _{\mathbf{R}, \mathbf{t}} \sum_{i} d_{i}^{2} & =\min _{\mathbf{R}, \mathbf{t}} \sum_{i}\left\|\overrightarrow{\mathbf{v}}_{i} \times\left(\mathbf{c}_{i}-\left(\mathbf{R} \overrightarrow{\mathbf{p}}_{i}+\overrightarrow{\mathbf{t}}\right)\right)\right\|^{2} \\
& =\min _{\mathbf{R}, \mathfrak{t}} \sum_{i}\left\|\operatorname{skew}\left(\overrightarrow{\mathbf{v}}_{i}\right) \bullet\left(\mathbf{c}_{i}-\left(\mathbf{R} \overrightarrow{\mathbf{p}}_{i}+\overrightarrow{\mathbf{t}}\right)\right)\right\|^{2}
\end{aligned}
$$

Step 4: Iterate steps 1-3 until reach convergence
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

Computational Note

Gueziec uses the Cayley parameterization for rotations:

$$
\mathbf{R}(\overrightarrow{\mathbf{u}})=(\operatorname{l-skew}(\overrightarrow{\mathbf{u}}))(1+\operatorname{skew}(\overrightarrow{\mathbf{u}}))^{-1}
$$

This leads to the approximation
$\mathbf{R}(\overrightarrow{\mathbf{u}}) \approx \mathrm{I}+\operatorname{skew}(2 \overrightarrow{\mathbf{u}})$
which is similar to our familiar $\mathbf{R}(\vec{\alpha}) \approx \mathbf{I}+\operatorname{skew}(\vec{\alpha})$.

He also uses the notation $\mathbf{U}=\operatorname{skew}(\overrightarrow{\mathbf{u}})$. So $\mathbf{R}(\overrightarrow{\mathbf{u}})=(\mathbf{I}-\mathbf{U})(\mathbf{I}+\mathbf{U})^{-1}$

Similarly, we will see $\mathbf{V}=\operatorname{skew}(\stackrel{\rightharpoonup}{\mathbf{v}})$, etc.

A countour-based 2D-3D method ...

Gueziec et al., 1998

Gueziec compared three different methods for performing the minimization in Step 3:

- Levenberg Marquardt (LM) nonlinear minimization.
- Linearization and constrained minimization
- Use of a Robust M-Estimator

Levenberg-Marquardt ...

(Following development in Gueziec et al., 1998)

Define $f_{i}(\vec{x})=\left\|\mathbf{V}_{i}\left(\overrightarrow{\mathbf{c}}_{i}-\mathbf{R}(\overrightarrow{\mathbf{u}}) \overrightarrow{\mathbf{p}}_{i}-\overrightarrow{\mathbf{t}}\right)\right\|$ where $\vec{x}^{t}=\left[\overrightarrow{\mathbf{u}}^{t}, \overrightarrow{\mathbf{t}}^{t}\right], \mathbf{V}_{i}=\operatorname{skew}\left(\overrightarrow{\mathbf{v}}_{i}\right)$

Our goal is to minimize

$$
\varepsilon(\vec{x})=\sum_{i} f_{i}(\vec{x})^{2}=\sum_{i}\left\|\mathbf{V}_{i}\left(\overrightarrow{\mathbf{c}}_{i}-\mathbf{R}(\overrightarrow{\mathbf{u}}) \overrightarrow{\mathbf{p}}_{i}-\overrightarrow{\mathbf{t}}\right)\right\|^{2}
$$

We note that $\varepsilon(\vec{x})$ is nonlinear. Levenberg-Marquardt is a widely used optimization method for problems of this type. However, it requires us to evaluate the partial derivitives $\partial f_{i} / \partial x_{j}$. Gueziec worked these out symbolically for his problem
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol.

Copyright © R. Taylor 2004-2011

Levenberg-Marquardt ...

(Following development in Gueziec et al., 1998)

Define $f_{i}(\vec{x})=\left\|\mathbf{V}_{i}\left(\overrightarrow{\mathbf{c}}_{i}-\mathbf{R}(\overrightarrow{\mathbf{u}}) \overrightarrow{\mathbf{p}}_{i}-\overrightarrow{\mathbf{t}}\right)\right\|$ where $\vec{x}^{t}=\left[\overrightarrow{\mathbf{u}}^{t}, \overrightarrow{\mathbf{t}}^{t}\right], \mathbf{V}_{i}=\operatorname{skew}\left(\overrightarrow{\mathbf{v}}_{i}\right)$
$\mathbf{J}=\left[\begin{array}{lll}\cdots & \frac{\partial f_{i}}{\partial \vec{x}} & \cdots\end{array}\right]=\left[\begin{array}{lll} & \frac{\partial f_{i}}{} & \\ \cdots & \frac{\partial \vec{u}}{} & \cdots \\ & \frac{\partial f_{i}}{\partial \overrightarrow{\mathbf{t}}} & \end{array}\right]$
$\frac{\partial f_{i}}{\partial \overrightarrow{\mathbf{t}}}=\frac{\mathbf{V}_{i}^{t} \mathbf{V}_{i}\left(\mathbf{R} \overrightarrow{\mathbf{p}}_{i}-\mathbf{c}+\overrightarrow{\mathbf{t}}\right)}{f_{i}}$
$\frac{\partial f_{i}}{\partial \overrightarrow{\mathbf{u}}}=\left(\frac{\partial \mathbf{R} \overrightarrow{\mathbf{p}}_{i}}{\partial \overrightarrow{\mathbf{u}}}\right)^{t} \frac{\mathbf{V}_{i}^{t} \mathbf{V}_{i}\left(\mathbf{R} \overrightarrow{\mathbf{p}}_{i}-\mathbf{c}+\overrightarrow{\mathbf{t}}\right)}{f_{i}}$

Details on this may be found in reference [45] of Gueziec's paper

Copyright © R. Taylor 2004-2011 17, pp. 715-728, 1998.

Levenberg-Marquardt ...

(Following development in Gueziec et al., 1998)
Step 1: Pick $\lambda=$ a small number; pick initial guess for \vec{x}
Step 2: Evaluate $f_{i}(\overrightarrow{\mathbf{x}})$ and \mathbf{J} and solve the least squares problem

$$
\left[\begin{array}{c}
\vdots \\
\left(\mathbf{J}^{\mathbf{t}} \mathbf{J}+\lambda \mathbf{I}\right) \Delta \vec{x}-\mathbf{J}^{\mathrm{t}} f_{i} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\vdots \\
0 \\
\vdots
\end{array}\right]
$$

for $\Delta \overrightarrow{\mathrm{x}}$.
Step 3: $\overrightarrow{\mathrm{x}} \leftarrow \overrightarrow{\mathrm{x}}+\Delta \overrightarrow{\mathrm{x}}$; update λ.
Step 4: Evaluate termination condition. If not done, go back to to step 2

Note: Usually λ starts small and grows larger. Consult standard references (e.g., Numerical Recipes) for more information.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol.

Copyright © R. Taylor 2004-2011

Constrained Linearized Least Squares ...

(Following development in Gueziec et al., 1998)
Step 0: Make an initial guess for \mathbf{R} and $\overrightarrow{\mathbf{t}}$
Step 1: Compute $\overrightarrow{\mathbf{p}}_{\mathrm{i}} \leftarrow \mathbf{R} \overrightarrow{\mathbf{p}}_{i}+\overrightarrow{\mathbf{t}}$
Step 2: Define $\mathbf{P}_{\mathrm{i}}=\operatorname{skew}\left(\overrightarrow{\mathbf{p}}_{i}\right), \mathbf{V}_{\mathrm{i}}=\operatorname{skew}\left(\overrightarrow{\mathbf{v}}_{i}\right)$
Step 3: Solve the least squares problem:

where ρ is sufficiently small so that $\mathbf{I + 2 U}$ approximates a rotation
Step 4: Compute $\Delta \mathbf{R}=(\mathbf{I}-\mathbf{U})(\mathbf{I}+\mathbf{U})^{-1}$
Update $\mathbf{p}_{i} \leftarrow \Delta \mathbf{R} \mathbf{p}_{i}+\Delta \overrightarrow{\mathbf{t}} ; \mathbf{R} \leftarrow \Delta \mathbf{R} \mathbf{R} ; \overrightarrow{\mathbf{t}} \leftarrow \Delta \mathbf{R} \overrightarrow{\mathbf{t}}+\Delta \overrightarrow{\mathbf{t}}$
Step 5: If ε is small enough or some othe termination condition is met, then stop. Otherwise go back to Step 2.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.
Copyright © R. Taylor 2004-2011

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU, vol. 60, no. 3, pp. 313-342, 1994

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU, vol. 60, no. 3, pp. 313-342, 1994

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU vol. 60, no. 3, pp. 313-342, 1994

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU, vol. 60, no. 3, pp. 313-342, 1994

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

Outliers excluded
R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU, vol. 60, no. 3 , pp. 313-342, 1994

Robust Pose Estimation ...

- Basic idea is to identify outliers and give them little or no weight.

R. Kumar and A. R. Hanson, "Robust methods for estimating pose and a sensitivity analysis," Comput. Vision, Graphics, Image Processing-IU vol. 60, no. 3, pp. 313-342, 1994.

Robust M-Estimator ...

(Following development in Gueziec et al., 1998)
Step 0: Make an initial guess for \mathbf{R} and $\overrightarrow{\mathbf{t}}$
Step 1: Compute $\overrightarrow{\mathbf{p}}_{\mathrm{i}} \leftarrow \mathbf{R} \overrightarrow{\mathbf{p}}_{i}+\overrightarrow{\mathbf{t}}$
Step 2: Define $\mathbf{P}_{i}=\operatorname{skew}\left(\overrightarrow{\mathbf{p}}_{i}\right), \mathbf{V}_{i}=\operatorname{skew}\left(\overrightarrow{\mathbf{v}}_{i}\right)$,
Step 3: Solve a robust linearized problem

$$
\varepsilon=\min _{\vec{u}, \Delta t} \sum_{i} \rho\left(\frac{0.6745 e_{i}}{\operatorname{median}\left(\left\{e_{i}\right\}\right)}\right) \text { where } \mathrm{e}_{\mathrm{i}}=\| \mathbf{V}_{i}\left(\overrightarrow{\mathbf{p}}_{i}-\mathbf{c}_{i}+2 \mathbf{P}_{i} \overrightarrow{\mathbf{u}}+\Delta \overrightarrow{\mathbf{t}} \|\right.
$$

(See next slide)
Step 4: Compute $\Delta \mathbf{R}=(\mathbf{I}-\mathbf{U})(\mathbf{I}+\mathbf{U})^{-1}$
Update $\mathbf{p}_{i} \leftarrow \Delta \mathbf{R} \mathbf{p}_{i}+\Delta \overrightarrow{\mathbf{t}} ; \mathbf{R} \leftarrow \Delta \mathbf{R} \mathbf{R} ; \overrightarrow{\mathbf{t}} \leftarrow \Delta \overrightarrow{\mathbf{R}}+\Delta \overrightarrow{\mathbf{t}}$
Step 5: If ε is small enough or some othe termination condition is met, then stop. Otherwise go back to Step 2.

Robust M-Estimator ...

(Following development in Gueziec et al., 1998)
Step 3.0: Set $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}, \Delta \mathbf{t}=\overrightarrow{\mathbf{0}}$
Step 3.1: Compute $e_{i}=\| \mathbf{V}_{i}\left(\overrightarrow{\mathbf{p}}_{i}-\overrightarrow{\mathbf{c}}_{i}+2 P_{i} \overrightarrow{\mathbf{u}}+\Delta \overrightarrow{\mathbf{t}} \|, s=\operatorname{median}\left(\left\{\cdots, e_{i}, \cdots\right\}\right) / 0.6745\right.$,
Step 3.2: Solve $\mathbf{C} \overrightarrow{\mathrm{x}}=\overrightarrow{\mathbf{d}}$, where $\overrightarrow{\mathbf{x}}^{\mathrm{t}}=\left[\overrightarrow{\mathbf{u}}^{t}, \overrightarrow{\mathbf{t}}^{t}\right]$

$$
\mathbf{C}=\sum_{i} \Psi\left(\frac{e_{i}}{s}\right)\left[\begin{array}{cc}
2 \mathbf{P}_{i} \mathbf{W}_{i} \mathbf{P}_{i} & \mathbf{P}_{i} \mathbf{W}_{i} \\
2 \mathbf{P}_{i} \mathbf{W}_{i} & \mathbf{W}_{i}
\end{array}\right] \text { and } \overrightarrow{\mathbf{d}}=\sum_{i} \Psi\left(\frac{e_{i}}{s}\right)\left[\begin{array}{c}
\mathbf{P}_{i} \mathbf{W}_{i}\left(\overrightarrow{\mathbf{c}}_{i}-\overrightarrow{\mathbf{p}}_{i}\right) \\
\mathbf{W}_{i}\left(\overrightarrow{\mathbf{c}}_{i}-\overrightarrow{\mathbf{p}}_{i}\right)
\end{array}\right]
$$

where $\mathbf{W}_{i}=\mathbf{V}_{i}^{t} \mathbf{V}_{i}=\mathbf{I}-\overrightarrow{\mathbf{v}}_{i} \mathbf{v}_{i}^{t} \quad \Psi(\mu)=\left\{\begin{array}{c}\mu\left(1-\mu^{2} / \alpha^{2}\right)^{2} \text { if }\|\mu\| \leq \alpha \\ 0 \quad \text { otherwise }\end{array}\right.$
Step 3.3: Iterate steps 3.1 and 3.2 until a suitable termination condition is reached.
A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol.

A countour-based 2D-3D method ... results
Gueziec et al., 1998

[10)

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "AnatomyBased Registration of CT-Scan and Intraoperative X-Ray Images for Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 17, pp. 715-728, 1998.

After

A contour-based 2D-3D method ... times
 Gueziec et al., 1998

TABLE I
Average Exbctution Tmes dn ms for the Thres Registration Methods Applitid to Daid Sets That Comprise 100 Poimts (Top) and 20 Points (Bottos)

Number Points/Method	LM	Linear	Robust
100 points (CPU time)	790	690	28
20 points (CPU time)	200	42	9.6

Sample Set Analysis

- Question: How good is a particular set of 3D sample points for the purpose of registration to a 3D surface?
- Long line of authors have looked at this question
- Next few slides are based on the work of David Simon, et al (1995)

Sample Set Analysis: Distance Estimates

l.e.t.

$$
4^{\prime}(x)-0
$$

$$
D(x)-\frac{F^{\prime}(x)}{\| \nabla \Gamma^{\prime}(x)}
$$

Sample set analysis: sensitivity

$$
x_{1}^{\prime}-\pi \min
$$

$$
\begin{aligned}
& \text { - } \mathrm{i}^{\mathrm{T}} \mathrm{M} \mathbf{1} \mathrm{i} \mathrm{x}, \mathrm{i} \boldsymbol{\pi}
\end{aligned}
$$

 ru:ltiv.

Sample set analysis: sensitivity

$$
\begin{aligned}
& -\pi_{1}^{\top} \text { D.n }^{\pi} \\
& \text { 下idAck i; }
\end{aligned}
$$

$$
\therefore \therefore x_{4} \quad \therefore x_{4}
$$

 (i).action.

Sample Set Analysis: Goodness Measures

- Magritucte of sinalest ejgemalue iSimos?
- (Kitli arded Klocia)

$$
\frac{\bar{V} \lambda_{1} \cdot \ldots \cdot \lambda_{i}}{\lambda_{1}-\ldots-\lambda_{6}}
$$

- Nalivi

$$
\lambda_{\ddot{\theta}}
$$

λ_{5}

Sample Set Selection

- One blind search method (similar to Simon, 1995) is:
- Randomly select sample points on surface
- (prune for reachability)
- evaluate goodness of sample set using some criterion
- repeat many times and choose the best one found

Sample Set Selection

－Refinement of blind search（hill climbing）：
－Randomly select sample points on surface
－（prune for reachability）
－evaluate goodness of sample set using some criterion
－replace a point from sample set with a randomly selected point
－evaluate goodness
－if better，keep it
－else revert to original point and try again
－Variations include simulated annealing，＂genetic＂ algorithms

Sample Set Selection：Another Alternative

＊ i^{1} 保
－I： \boldsymbol{z} ：：v l：

と品 \because

su：n
 ivers 心

Sample Set Selection: Another Alternative (con'd)

זוּ.
$\therefore \therefore 1$

$$
s \leq\{1\}
$$

$$
\varepsilon \therefore<\Leftrightarrow
$$

:

$$
\text { |h, V, Tr } \because c_{c}
$$

Related concept: Estimation with Uncertainty

Suppose you know something about the uncertainty of the sample data at each point pair (e.g., from sensor noise and/or model error). I.e.,

$$
\overrightarrow{\mathbf{a}}_{k} \in \boldsymbol{A}_{k} ; \overrightarrow{\mathbf{b}}_{k} \in \boldsymbol{B}_{k} ; \operatorname{cov}\left(\boldsymbol{A}_{k}, \boldsymbol{B}_{k}\right)=\mathbf{C}_{k}=\mathbf{Q}_{k} \Lambda_{k} \mathbf{Q}_{k}^{\top}
$$

Then an appropriate distance metric is the Mahalabonis distance

$$
\mathrm{D}\left(\overrightarrow{\mathbf{a}}_{k}, \overrightarrow{\mathbf{b}}_{k}\right)=\left(\overrightarrow{\mathbf{a}}_{k}-\overrightarrow{\mathbf{b}}_{k}\right)^{\top} \mathbf{C}_{k}^{-1}\left(\overrightarrow{\mathbf{a}}_{k}-\overrightarrow{\mathbf{b}}_{k}\right)=\overrightarrow{\mathbf{d}}_{k}^{\top} \Lambda_{k}^{-1} \overrightarrow{\mathbf{d}}_{k}
$$

where

$$
\overrightarrow{\mathbf{d}}_{k}=\mathbf{Q}_{k}^{\top}\left(\overrightarrow{\mathbf{a}}_{k}-\overrightarrow{\mathbf{b}}_{k}\right)
$$

This approach is readily extended to the case where the samples are not independent.

Intensity-based methods

- Typically performed between images
- The "features" in this case are the intensities associated with pixels (2D) or voxels (3D) in the images.
- General framework:

$$
\vec{\rho}^{*}=\min _{\vec{\rho}} E\left(\text { Image }_{1}, \Theta\left(\vec{\rho}, \text { Image }_{2}\right)\right)
$$

- Methods differ mostly in choice of transformation function $\Theta(\cdot)$ and Energy function $E(\cdot, \cdot)$,

Typical energy functions

(not an exhaustive list)

Normalized image subtraction

$$
E\left(\operatorname{Im}_{1}, \operatorname{Im}_{2}\right)=\sum_{\bar{k}} \frac{\left|\operatorname{Im}_{1}[\bar{k}]-\operatorname{Im}_{2}[\bar{k}]\right|}{\max _{\bar{j}}\left(\left|\operatorname{lm}_{1}[\bar{j}]-\operatorname{Im}_{2}[\bar{j}]\right| \mid\right)}
$$

Normalized cross correlation

$$
E\left(\operatorname{lm}_{1}, \operatorname{Im}_{2}\right)=\frac{\sum_{\bar{k}}\left(\operatorname{lm}_{1}[\bar{k}]-\operatorname{avg}\left(\operatorname{lm}_{1}\right)\right)\left(\operatorname{Im}_{2}[\bar{k}]-\operatorname{avg}\left(\operatorname{Im}_{2}\right)\right)}{\sqrt{\sum_{\bar{k}}\left(\operatorname{lm}_{1}[\bar{k}]-\operatorname{avg}\left(\operatorname{Im}_{1}\right)\right)^{2} \sqrt{\sum_{\bar{k}}\left(\operatorname{lm}_{2}[\bar{k}]-\operatorname{avg}\left(\operatorname{lm}_{2}\right)\right)^{2}}}}
$$

Mutual information

```
\(\mathrm{E}\left(\mathrm{Im}_{1}, \operatorname{Im}_{2}\right)=\sum_{p \in \mathrm{~m}, q \in \mathrm{~m}_{2}} \operatorname{Pr}(p, q) \log \operatorname{Pr}(p, q)-\operatorname{Pr}_{\mathrm{rm}_{1}}(p) \log \mathrm{Pr}_{\mathrm{Im}_{1}}(p)-\operatorname{Pr}_{\mathrm{Im}_{2}}(q) \log \operatorname{Pr}_{\mathrm{Im}_{2}}(q)\)
Copyright © R. Taylor 2004-2011
```


Mutual Information

- First proposed independently in 1995 by Collignon and Viola \& Wells.
- Very widely practiced
- Is able to co-register images with very different sensor modalities so long as there is a stable relationship between intensities in one modality with those in another
- Many "flavors" and variations

Mutual Information

Entropy

$$
\begin{aligned}
& H(a)=\operatorname{Pr}(a) \log \operatorname{Pr}(a) \\
& H(a, b)=\operatorname{Pr}(a, b) \log \operatorname{Pr}(a, b)
\end{aligned}
$$

Mutual Information (Viola \& Wells '95, Colligen '95)
Similarity $(A, B)=H(A)+H(B)-H(A, B)$
Normalized mutual information (Maes et al. '97)
Similarity $(A, B)=\frac{H(A)+H(B)}{H(A, B)}$
Objective function
$\mathrm{E}\left(\mathrm{Im}_{1}, \mathrm{Im}_{2}\right)=-$ Similarity $\left(\mathrm{Im}_{1}, \mathrm{Im}_{2}\right)$

Optimizer: Downhill Simplex

Deformable Registration to Statistical "Atlases"

Deformable 3D/3D Jianhua Yao

Deformable 2D/3D Ofri Sadowsky

Deformable Altas-based Registration

- Much of the material that follows is derived from the Ph.D. thesis work of J. Yao, Ofri Sadowsky, and Gouthami Chintalapani:
- J. Yao, "Statistical bone density atlases and deformable medical image registrations", Ph. D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2001.
- O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of Bone Anatomy Using a Statistical Shape Atlas," Ph.D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2008
- G. Chintalapani, Statistical Atlases of Bone Anatomy and Their Applications, Ph.D. thesis in Computer Science, The Johns Hopkins University, Baltimore, Maryland, 2010.
- A number of other authors, including
- Cootes et al. 1999 - "Active Appearance Models"
- Feldmar and Ayache 1994
- Ferrant et al. 1999
- Fleute and Lavallee 1999
- Lowe 1991
- Maurer et al. 1996
- Shen and Davatzikos 2000

Copyright © R. Taylor 2004-2011

What is a "Statistical Atlas"?

- An atlas that incorporates statistics of anatomical shape and intensity variations of a given population

[^0]

Deformable Altas-based Registration

- Much of the material that follows is derived from the Ph.D. thesis work of J. Yao and Ofri Sadowsky:
- J. Yao, "Statistical bone density atlases and deformable medical image registrations", Ph. D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2001.
- O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of Bone Anatomy Using a Statistical Shape Atlas," Ph.D. Thesis, Computer Science, The Johns Hopkins University, Baltimore, 2008
- G. Chintalapani, Statistical Atlases of Bone Anatomy and Their Applications, Ph.D. thesis in Computer Science, The Johns Hopkins University, Baltimore, Maryland, 2010.
- A number of other authors, including
- Cootes et al. 1999 - "Active Appearance Models"
- Feldmar and Ayache 1994
- Ferrant et al. 1999
- Fleute and Lavallee 1999
- Lowe 1991

Digression on
"active appearance models"

- Maurer et al. 1996
- Shen and Davatzikos 2000

Copyright © R. Taylor 2004-2011

Model Representation

> Tetrahedral mesh represents shape
> Bernstein polynomials approximate CT density within each tetrahedron[1,2]

$$
\begin{aligned}
& P^{d}(\mathbf{u})=\sum_{|\mathbf{k}|=d} C_{\mathbf{k}} B_{\mathbf{k}}^{d}(\mathbf{u}) \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{k}=\left(k_{0}, k_{1}, k_{2}, k_{3}\right) \quad \mathbf{u}=\left(u_{0}, u_{1}, u_{2}, u_{3}\right) \\
& |\mathbf{k}|=k_{0}+k_{1}+k_{2}+k_{3} \quad|\mathbf{u}|=1 \\
& B_{\mathbf{k}}^{d}(\mathbf{u})=\frac{d!}{k_{0}!k_{1}!k_{2}!k_{3}!} u_{0}^{k_{0}} u_{1}^{k_{1}} u_{2}^{k_{2}} u_{3}^{k_{3}}
\end{aligned}
$$

[1]Analyze, www.mayoclinic.org

Model Correspondence

- Need to establish a common coordinate frame for the training database

- Need to establish point correspondence between the training datasets

Model Shape Correspondences

- Automatic deformable registration based shape correspondences

Flowchart for establishing shape correspondences for the training

Model Intensity Correspondences

- Automatic deformable registration based correspondences

Flowchart for establishing intensity correspondences for the training sample

Copyright © R. Taylor 2004-2011

Principal Component Analysis

- Given the mesh instances of training sample,

$$
S=\left[\begin{array}{llll}
\hat{s}_{1} & \hat{s}_{2} & \cdot & \cdot
\end{array} \hat{s}_{N}\right]_{3 n X N}=\left|\begin{array}{ccccc}
x_{11} & x_{12} & \cdot & \cdot & x_{1 N} \\
y_{11} & y_{12} & \cdot & \cdot & y_{1 N} \\
z_{11} & z_{12} & \cdot & \cdot & z_{1 N} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
y_{n 1} & y_{n 2} & \cdot & . & z_{n N} \\
z_{n 1} & z_{n 2} & \cdot & . & z_{n N}
\end{array}\right|
$$

- Compute mean and subtract the mean from the sample
- Compute

$$
f=S-\bar{s}=S-\frac{1}{N} \sum_{i=1}^{N} \hat{s}_{i}
$$

$$
S V D(S)=U D V^{T}
$$

With principal components in U and eigen values $\lambda=\frac{1}{N-1} D D^{T}$

Principal Component Analysis

- Given the PCA model, any data instance can be expressed as a linear combination of the principal components

$$
\bar{S}+\sum_{k=1}^{N-1} U_{k} \lambda_{k}
$$

- Compact model \rightarrow fewer components
- Select first 'd' components represented by the 'd' eigen values

Statistical Shape and Intensity Models

- Shape statistical model: Mesh vertices become data matrix

$$
\bar{s}+\sum_{k=1}^{d} U_{k} \lambda_{k}=\bar{s}+U^{T} \lambda
$$

- Intensity statistical model: Polynomial coefficients become data matrix

$$
\bar{c}+\sum^{p} Y_{k} \mu_{k}=\bar{c}+Y^{T} \mu
$$

$$
k=1
$$

Statistical Atlases \& PCA

Given a set of N models $\overrightarrow{\mathbf{X}}^{(j)}=\left[\overrightarrow{\mathbf{x}}_{k}{ }^{(j)}\right]^{T}=\left[\cdots x_{k}^{(j)}, y_{k}{ }^{(j)}, z_{k}^{(j)}, \cdots\right]$, compute $\overrightarrow{\mathbf{X}}^{\text {(avg) }}=\left[\begin{array}{c}\vdots \\ \overrightarrow{\mathbf{x}}_{k}^{(\text {avg })} \\ \vdots\end{array}\right]$ where $\overrightarrow{\mathbf{x}}_{k}^{(\text {avg })}=\frac{1}{N} \sum_{j} \overrightarrow{\mathbf{x}}_{k}^{(j)}$ and the differences $\overrightarrow{\mathbf{D}}^{(j)}=\overrightarrow{\mathbf{X}}^{(\mathrm{j})}-\overrightarrow{\mathbf{X}}^{(\mathrm{avg})}=\left[\begin{array}{c}\vdots \\ \overrightarrow{\mathbf{d}}_{k}^{(j)} \\ \vdots\end{array}\right]$ where $\overrightarrow{\mathbf{d}}_{k}^{(j)}=\overrightarrow{\mathbf{x}}_{k}^{(j)}-\overrightarrow{\mathbf{x}}_{k}^{(\text {avg })}$. Create the matrix

Statistical Atlases \& PCA

Compute the singular value decomposition of \mathbf{D}

$$
\begin{aligned}
& \mathbf{D}=\mathbf{U} \Sigma \mathbf{V}^{\top} \\
& \mathbf{D}=\mathbf{U}\left[\begin{array}{c}
\operatorname{diag}(\vec{\sigma}) \mathbf{V}^{\top} \\
\mathbf{0}
\end{array}\right]
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \frac{1}{N} \mathbf{D}^{\top} \mathbf{D}=\frac{1}{N} \mathbf{V} \Sigma \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top}=\frac{1}{N} \mathbf{V} \Sigma^{2} \mathbf{V}^{\top} \\
& \frac{1}{N} \mathbf{D D}^{\top}=\frac{1}{N} \mathbf{U} \Sigma \mathbf{V}^{\top} \mathbf{V} \Sigma \mathbf{U}^{\top}=\frac{1}{N} \mathbf{U} \Sigma^{2} \mathbf{U}^{\top}
\end{aligned}
$$

Statistical Atlases \& PCA

Any individual model $\mathbf{D}^{(j)}$ can be written as a linear combination of the rows of \mathbf{U}. Treating $\overrightarrow{\mathbf{D}}^{(j)}$ as a column vector, we can write this as

If we define
$\mathbf{M}=\left[\begin{array}{lll}\mathbf{U}^{(1)} & \ldots & \mathbf{U}^{(N)}\end{array}\right]$ (i.e., the first N columns of \mathbf{U}) we get the expression

$$
\overrightarrow{\mathbf{D}}^{(j)}=\mathbf{M} \vec{\lambda} \text { where } \vec{\lambda} \text { is the } j^{\text {th }} \text { column of }\left(\operatorname{diag}(\vec{\sigma}) \mathbf{V}^{\top}\right) .
$$

Statistical Atlases \& PCA

Note that while \mathbf{U} is $3 N_{\text {vertices }} \times 3 N_{\text {vertices }}$ (i.e., huge), \mathbf{M} has only the first N columns, since there are at most N non-zero singular values

In fact, we usually also truncate even more, only saving columns corresponding to relatively large singular values σ_{i}. Since the standard algorithms for SVD produce positive singular values σ_{i} sorted in descending order, this is easy to do.

Note also, that since the columns of \mathbf{M} are also columns of \mathbf{U}, they are orthogonal. Hence $\mathbf{M}^{\top} \mathbf{M}=\mathbf{I}_{N \times N}$. But $\mathbf{M M}^{\top}=\mathbf{C}$ will be an $3 N_{\text {vertices }} \times 3 N_{\text {verices }}$ matrix that will not in general be diagonal.

Statistical Atlases \& PCA

As a practical matter, it is not a good idea to ask your SVD program to produce the full matrix \mathbf{U} for an $3 N_{\text {vertices }} \times N$ matrix \mathbf{D}. Most SVD packages give you the option to compute only the singular values $\vec{\sigma}$ and the right hand side matrix \mathbf{V} or its transpose. Then, \mathbf{M} can be computed from
$\mathbf{M d i a g}(\vec{\sigma}) \mathbf{V}^{\top}=\mathbf{D}$
$\mathbf{M d i a g}(\vec{\sigma})=\mathbf{D V}$
$\mathbf{M}=\mathbf{D V} \operatorname{diag}(\vec{\sigma})^{-1}$
$=\mathbf{D V}\left[\begin{array}{ccccc}1 / \sigma_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & & & \vdots \\ \vdots & & 1 / \sigma_{k} & & \vdots \\ \vdots & & & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 / \sigma_{N}\end{array}\right]$

Copyright © R. Taylor 2004-2011

Statistical Atlases \& PCA

Similarly, given a vector $\overrightarrow{\mathbf{D}}^{\text {(inst) }}$ we can find a corresponding vector $\vec{\lambda}^{\text {(inst) }}$ from the following

$$
\begin{aligned}
\overrightarrow{\mathbf{D}}^{\overrightarrow{\text { lnstl }}} & =\mathbf{M} \vec{\lambda}^{\text {(inst) }} \\
\mathbf{M}^{\top} \overrightarrow{\mathbf{D}}^{(\text {inst) }} & =\mathbf{M}^{\top} \mathbf{M} \vec{\lambda}^{\text {(inst) })} \\
& =\vec{\lambda}^{\text {(inst }}
\end{aligned}
$$

Statistical Atlases \& PCA

Suppose that we select $\vec{\lambda}=\left[\lambda_{1}, \cdots, \lambda_{N}\right]^{\top}$ as a random variable with some distribution having expected value $E(\vec{\lambda})=\overrightarrow{\mathbf{0}}$ and covariance

$$
\operatorname{cov}(\vec{\lambda})=E\left(\vec{\lambda} \bullet \vec{\lambda}^{T}\right)=\left[\begin{array}{ccc}
E\left(\lambda_{1}^{2}\right) & \cdots & E\left(\lambda_{1} \lambda_{N}\right) \\
\vdots & \ddots & \vdots \\
E\left(\lambda_{N} \lambda_{1}\right) & \cdots & E\left(\lambda_{N}{ }^{2}\right)
\end{array}\right]=\Sigma^{2}
$$

and compute a corresponding random model $\overrightarrow{\mathbf{X}}(\vec{\lambda})$

$$
\overrightarrow{\mathbf{X}}(\vec{\lambda})=\overrightarrow{\mathbf{X}}^{(\mathrm{avg})}+\mathbf{M} \bullet \vec{\lambda}
$$

What can we say about the expected value and covariance of $\overrightarrow{\mathbf{X}}(\vec{\lambda})$?

Statistical Atlases \& PCA

For the expected value, we have

$$
\begin{aligned}
E(\overrightarrow{\mathbf{X}}(\vec{\lambda})) & =E\left(\overrightarrow{\mathbf{X}}^{\text {(avg })}+\mathbf{M} \bullet \vec{\lambda}\right) \\
& =\overrightarrow{\mathbf{X}}^{\text {avg }}+\mathbf{M} \bullet E(\vec{\lambda}) \\
& =\overrightarrow{\mathbf{X}}^{\text {avg }}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{cov}(\overrightarrow{\mathbf{X}}(\vec{\lambda})) & =E\left(\overrightarrow{\mathbf{D}}(\vec{\lambda}) \bullet \overrightarrow{\mathbf{D}}(\vec{\lambda})^{T}\right) \text { where } \overrightarrow{\mathbf{D}}(\vec{\lambda})=\overrightarrow{\mathbf{X}}(\vec{\lambda})-\overrightarrow{\mathbf{X}}^{\text {avg })} \\
& =E\left(\mathbf{M} \bullet \vec{\lambda} \bullet \vec{\lambda}^{T} \bullet \mathbf{M}\right) \\
& =\mathbf{M} \bullet E\left(\vec{\lambda} \bullet \vec{\lambda}^{T}\right) \bullet \mathbf{M}^{\top} \\
& =\mathbf{M} \bullet \Sigma^{2} \bullet \mathbf{M}^{\top}
\end{aligned}
$$

Statistical Atlases \& PCA

Thus, if we assemble a representative sample set of models $\overrightarrow{\mathbf{X}}^{(j)}$, and compute the average model $\overrightarrow{\mathbf{X}}^{(a v g)}$ and the SVD of the corresponding matrix $\mathbf{D}=\left[\ldots\left(\overrightarrow{\mathbf{X}}^{(j)}-\overrightarrow{\mathbf{X}}^{(a v g)}\right)\right]$, then we have a way of generating an arbitrary number of models

$$
\overrightarrow{\mathbf{X}}^{\text {(inst) }}=\overrightarrow{\mathbf{X}}^{\text {(avg) }}+\mathbf{M} \vec{\lambda}^{\text {(inst) }}=\overrightarrow{\mathbf{X}}^{\text {(avg) }}+\sum_{k} \overrightarrow{\mathbf{M}}^{(k)} \lambda_{k}^{(\text {inst })}
$$

with the same mean and covariance. l.e., we know how the individual features $\overrightarrow{\mathbf{x}}_{k}{ }^{\text {(inst) }}$ co-vary.

Further, given a representative model instance $\overrightarrow{\mathbf{X}}^{\text {(inst) }}$ we can compute a corresponding set of mode weights $\vec{\lambda}^{\text {(inst) }}$ from

$$
\vec{\lambda}^{\text {(inst) }}=\mathbf{M}^{\top}\left(\overrightarrow{\mathbf{X}}^{\text {(inst) }}-\overrightarrow{\mathbf{X}}^{\text {avg) }}\right)
$$

Statistical Atlas

Thus, one representation of a statistical "atlas" of models consists of

- An average model $\overrightarrow{\mathbf{X}}^{\text {(avg) }}$
- An eigen matrix \mathbf{V} of variation modes
- A diagonal covariance matrix Σ^{2} for the modes

This information may be used in many ways, including

- Atlas-based deformable segmentation/registration
- Statistical analysis of anatomic variation
- etc.

Deformable Registration Between Density Atlas and Patient CT

- Goal: Register and Deform the statistical density atlas to match patient anatomy
- Significance:
- Building patient specific model with same topology (mesh structure) as the atlas
- Automatic segmentation
- Accumulatively building models for training set
- Pathological diagnosis

Deformable Registration Scheme

- Affine Transformation
- Translation $\mathrm{T}=\left(t_{x}, t_{y}, t_{z}\right)$
- Rotation $\mathrm{R}=\left(r_{x}, r_{y}, r_{z}\right)$
- Scale S=($\left.s_{x}, s_{y}, s_{z}\right)$
- Global Deformation
- Statistical deformation mode $\left(M_{i}\right)$
- Local Deformation
- Adjustment of every vertex

Optimization Algorithm

- Direction Set (Powell's) methods in multi-dimensions
- Search the parameter space to minimize the cost functions
- Advantage
- Don't need to compute derivative of cost functions
- Much fewer evaluations than downhill simplex methods

Energy Function

- To measure the density and shape difference between model and image

$$
\begin{aligned}
& E(m d l, i m g)=w_{s} E^{(s)}(m d l, i m g)+w_{d} E^{(d)}(m d l, i m g) \\
& E^{(s)}(m d l, i m g)=\sum_{i=1}^{N(v)}\left(\stackrel{\rightharpoonup}{g}^{(m d l)}\left(v_{i}\right) \cdot \vec{g}^{(i m g)}\left(v_{i}\right)\right) \\
& E^{(d)}(m d l, i m g)=\sum_{i=1}^{N(t)}\left(\oint_{\mu}\left(\frac{d^{(m d l)}\left(t_{i}, \mu\right)-d^{(i m g)}\left(t_{i}, \mu\right)}{d^{(m d l)}\left(t_{i}, \mu\right)}\right)^{2}\right)
\end{aligned}
$$

Jianhua Yao
Copyright © R. Taylor 2004-2011

Local Deformation

- Motivation: Statistical deformation can't capture all the variability due to the limited number of models in the training set
- Locally adjust the location of vertices to match the boundary of the bone and the interior density property
- Use multiple-layer flexible mesh template matching to find the correspondence between model vertices and image voxels

Multiple-layer Flexible Mesh Template

- Each vertex on the model defines a mesh template
- Template is in the form

Deformable Atlas-to-CT Registration (3D-3D)

Results (Deformable Registration)

Copyright © R. Taylor 2004-2011

Deformable registration between density atlas and a set of 2D X-Rays

- Goal: Register and Deform the statistical density atlas to match intraoperative x-rays
- Significance:
- Build virtual patient specific CT without real patient CT
- Register pre-operative models and intra-operative images
- Map predefined surgical procedure and anatomical landmarks into intra-operative images

Deformable 3D/2D Registration

Ofri Sadowsky

Optimizer: Downhill Simplex

Copyright © R. Taylor 2004-2011

2D-3D Reconstruction from 3 DEXA Images

Omar Ahmad, et al.

Femur model from three 2D DXA images

JHU: Omar Ahmed, Ofri Sadowsky, Russell Taylor
Inst. of Aging Research, Boston: David Karasik U. Erlangen: Klaus Engelke Hologic, Inc.: Krishna Ramamurthi, Kevin Wilson
BIDMC, Boston: Mary Bouxsein Copyright © R. Taylor 2004-2011

[^0]: Credit: G. Chintalapani 2010

