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Registration 

600.445 Computer-Integrated Surgery 

Russell H. Taylor 
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What needs registering? 

•  Preoperative Data 
–  2D & 3D medical images 
–  Models 

–  Preoperative positions 

•  Intraoperative Data 
–  2D & 3D medical images 

–  Models 

–  Intraoperative positioning information 

•  The Patient 
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A typical registration problem 

Intraoperative 
Reality 

Preoperative 
Model 
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A typical registration problem 

Intraoperative 
Reality 

Preoperative 
Model 


ptrv=


regCT ptrFv v 

ptrv

What is ???regF
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Framework for feature-based methods 

•  Definition of coordinate system relations 

•  Segmentation of reference features 

•  Definition of disparity function between 
features 

•  Optimization of disparity function 
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Taxonomy of methods 

•  Feature-based 

•  Intensity-based 
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Definitions 

Overall Goal: Given two coordinate systems,  

    

and coordinates 

associated with homologous features in the two 
coordinate systems, the general goal is to determine a 
transformation function T that transforms one set of 
coordinates into the other: 

Ref RefA B &  

x xA B &  

x T xA B= ( )
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Definitions 

•  Rigid Transformation: Essentially, our old friends 
2D & 3D coordinate transformations: 

  T(x) = R•x + p 

 The key assumption is that deformations may be 
neglected. 

•  Elastic Transformation: Cases where must take 
deformations into account.  Many different flavors, 
depending on what is being deformed 
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Uses of Rigid Transformations 

•  Register (approximately) multiple image data sets 

•  Transfer coordinates from preoperative data to reality 
(especially in orthopaedics & neurosurgery) 

•  Initialize non-rigid transformations 
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Uses of Elastic Transformations 

•  Register different patients to common data base 
(e.g., for statistical analysis) 

•  Overlay atlas information onto patient data 

•  Study time-varying deformations 

•  Assist segmentation 
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Typical Features 

•  Point fiducials 

•  Point anatomical landmarks 

•  Ridge curves 

•  Contours 

•  Surfaces 

•  Line fiducials 
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Distance Functions 

Given two (possibly distributed) features Fi and 
Fj, need to define a distance metric distance (Fi, 
Fj) between them.  Some choices include: 

– Minimum distance between points 

– Maximum of minimum distances 

– Area between line features 

– Volume between surface features 

– Area between point and line 

– etc. 
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Disparity Functions Between Feature Sets 
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Optimization 

•  Global vs Local 

•  Numerical vs Direct Solution 

•  Local Minima 
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A typical fiducial-based registration problem 

Intraoperative 
Reality 

Preoperative 
Model 
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What the computer knows 

Intraoperative 
Reality 

Preoperative 
Model 

1a


3a


2a


3b


2b


1b
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Identify corresponding points 

Intraoperative 
Reality 

Preoperative 
Model 

1a


3a


2a


3b


2b


1b
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Find best rigid transformation! 

Intraoperative 
Reality 

Preoperative 
Model 

−

∑
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Navigate 

Intraoperative 
Reality 

Preoperative 
Model 


ptrv=


CT reg ptrv F v
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Sampled 3D data to surface models 
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A typical surface registration problem 

Intraoperative 
Reality 

Preoperative 
Model 
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What the computer knows 
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Find homologous points & pull! 
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Find homologous points & pull! 
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Find homologous points & pull! 

Iterate this until converge 

Find new point pairs every 
iteration 

Key challenge is finding 
point pairs efficiently. 
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Head in Hat Algorithm 
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Head in Hat Algorithm 
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Head-in-hat algorithm: step 0 
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Head-in-hat algorithm: step1 
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Head-in-hat algorithm: step1 
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Head-in-hat algorithm: step 2 
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Head-in-hat algorithm: step 2 
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Head-in-hat algorithm: step 3 
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Head in Hat Algorithm 

•  Strengths 
–  Moderately straightforward to implement 
–  Slow step is intersecting rays with surface model 

–  Works reasonably well for original purpose (registration of 
skin of head) if have adequate initial guess 

•  Weaknesses 
–  Local minima 

–  Assumptions behind use of centroid 

–  Requires good initial guess and close matches during 
convergence 
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Minimizing Rigid Registration Errors 

Typically,  given a set of points {  in one coordinate system
and another set of points {  in a second coordinate system
Goal is to find [ imizes

where 

This is tricky,  because of  

i

i

a
b

R p

e e

e R a p b
R

}
}

, ] that min

( )
.

η = •

= • + −

∑ i
i

i

i i i
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Minimizing Rigid Registration Errors 
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Step 1: Compute 

                      

Step 2: Find  that minimizes

Step 3: Find 

Step 4: Desired transformation is
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Solving for R: iteration method 

( ){ } ( )

0

1

2

1

, , , argmin

,

( )

i i i i
i

k i k i

i i
i

k k

−

+
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=
Δ
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∑

∑

a b R Ra b

R

R b R b
R

Ra b

R R R

   

 




Given ,   want to find 

Step 0: Make an initial guess 

Step 1: Given  compute   
Step 2: Compute  that minimizes

Step 3: Set 
Step 4: Iterate Steps 1-3 until residual error is sufficiently small 
             (or other termination condition)
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Iterative method: Solving for ΔR 

2 2

( )).

.

( ) min ( )

.

i i i i i
i i

skew

Δ α

Δ + α
Δ • ≈ +α×

Δ • − ≈ − +α×

α

∑ ∑R

R I
R v v v

v

R a b a b a
 

  

Approximate  as (   I.e., 

for any vector   Then, our least squares problem becomes

min  

This is linear least squares problem in 

Then com ( ).Δ αRpute 
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Direct Techniques to solve for R 

, , , , , ,

, , , , , ,

, , , , , ,

Step 1: Compute 

Step 2: Compute the SVD of  =  
Step 3: 
Step 4: Verify ( ) 1.  If not, then algorithm 

i x i x i x i y i x i z

i y i x i y i y i y i z
i

i z i x i z i y i z i z

a b a b a b
a b a b a b
a b a b a b

Det

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

=
=

∑

t

t

H

H USV
R VU

R may fail.

•  Method due to K. Arun, et. al., IEEE PAMI, Vol 9, no 
5, pp 698-700, Sept 1987  

•  Failure is rare, and mostly fixable.  The paper has details. 
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Quarternion Technique to solve for R 

•  B.K.P. Horn, “Closed form solution of absolute 
orientation using unit quaternions”, J. Opt. Soc. 
America, A vol. 4, no. 4, pp 629-642, Apr. 1987.  

•  Method described as reported in Besl and McKay, 
“A method for registration of 3D shapes”, IEEE 
Trans. on Pattern Analysis and Machine 
Intelligence, vol. 14, no. 2, February 1992.  

•  Solves a 4x4 eigenvalue problem to find a unit 
quaternion corresponding to the rotation 

•  This quaternion may be converted in closed form to 
get a more conventional rotation matrix 
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Digression: quaternions 

[ ]
[ ]

0 1 2 3

0 1 2 3

1

, , ,
,
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q
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Invented by Hamilton as a way to express the ratio
of vectors.  Can be thought of as 

4 elements:               
scalar & vector:      

Properties:
Linearity: [ ]
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Conjugate:
Product:  

Transform vector:   

Norm:
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Digression continued: unit quaternions 

( , cos , sin
2

(( , cos , sin 0
2

Rot

Rot

θ

θ θ⎡ ⎤θ ⇔ ⎢ ⎥⎣ ⎦

θ θ⎡ ⎤θ = ⎢ ⎥⎣ ⎦

n

n n

n p n



 

  
i 

We can associate a rotation by angle  about an 
axis  with the unit quaternion:

)  
2

Exercise:  Demonstrate this relationship.  I.e., show

)  
2

[ ], cos , sin
2
θ θ⎡ ⎤−⎢ ⎥⎣ ⎦

p n 
  

2
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Rotation matrix from unit quaternion 

[ ]0 1 2 3

2 2 3 3
0 1 2 3 1 2 0 3 1 3 0 2

2 2 3 3
1 2 0 3 0 1 2 3 2 3 0 1

2 2 3 3
1 3 0 2 2 3 0 1 0 1 2 3

, , , 1

2( ) 2( )

( ) 2( ) 2( )

2( ) 2( )

q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

= =

⎡ ⎤+ − − − +
⎢ ⎥

= + − + − −⎢ ⎥
⎢ ⎥− + − − +⎢ ⎥⎣ ⎦

q q

R q

;   
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Unit quaternion from rotation matrix 

    

R(q) =

rxx ryx rzx

rxy ryy rzy

rxz ryz rzz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

;   
a0 =1+ rxx + ryy + rzz ;  a1 =1+ rxx − ryy − rzz  

a2 =1− rxx + ryy − rzz ;  a3 =1− rxx − ryy + rzz

a0 = max{ak } a1 = max{ak } a2 = max{ak } a3 = max{ak }

q0 =
a0

2
q0 =

ryz − rzy

4q1

q0 =
rzx − rxz

4q2

q0 =
rxy − ryx

4q3

q1 =
rxy − ryx

4q0

q1 =
a1

2
q1 =

rxy + ryx

4q2

q1 =
rxz + rzx

4q3

q2 =
rzx − rxz

4q0

q2 =
rxy + ryx

4q1

q2 =
a2

2
q2 =

ryz + rzy

4q3

q3 =
ryz − rzy

4q0

q3 =
rxz + rzx

4q1

q3 =
ryz + rzy

4q2

q3 =
a3

2
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Quaternion method for R 

, , , , , ,

, , , , , ,

, , , , , ,

( )
( )

2,3 3,2 3,1 1,3 1,2 2,1

Step 1: Compute 

Step 2: Compute 

     where =

Step
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i
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T

T

T

a b a b a b
a b a b a b
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H
G

H H H I
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[ ]0 1 2 3, , ,

 3: Compute eigen value decomposition of 
diag( )=

 Step 4: The eigenvector =  corresponding to 
     the largest eigenvalue  is a unit quaternion corresponding 
     to the rotation.  

T

k

k

q q q q
λ

λ

G
Q GQ
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Iterative Closest Point 
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Iterative Closest Point: step 0 
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Iterative Closest Point: step1 
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Iterative Closest Point: step1 
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Iterative Closest Point: step2 
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Iterative Closest Point: step 3 
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Iterative Closest Point: step 2 interation 2 
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Iterative Closest Point: step 3 interation 2 
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Iterative Closest Point: step 2 interation 3 
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Iterative Closest Point: step 3 interation 3 
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Iterative Closest Point: step 3 interation N 
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•  Minimization step can be fast 

•  Crucially requires fast finding of nearest 
points 

•  Local minima still an issue 

•  Data overlap still an issue 

Iterative Closest Point: Discussion 
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Outline of a practical ICP code 

       

Given
     1. Surface model M consisting of triangles m i{ }
     2. Set of points Q = q1,, qN{ }  known to be on M.

     3. Initial guess F0  for transformation F0  such that 
         the points Fi

qk  lie on M.
     4. Initial threshold η0  for match closeness
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Outline of a practical ICP code 

       

Temporary variables
 

     

n
Fn = [R, p]

Iteration number
Current estimate of transformation

ηn Current match distance threshold

C = ,ck ,{ }
D = ,dk ,{ }
I = ,ik ,{ }
A = , a k ,{ }

Closest points on M to Q
Distances dk =

ck − Fn ⋅
qk  

Indices of triangles m ik
corresp. to ck  

Subset of Q with valid matches

B = ,

bk ,{ } Points on Mcorresponding to A

E = ,ek ,{ } Residual errors 

bk − F ⋅ a k

σn ,  εmax( )n
, εn

ek ⋅
ekk∑

NumElts(E)
;   max

k

ek ⋅
ek ; 

ek ⋅
e

kk∑
NumElts(E)
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Outline of a practical ICP code 

       

Step 0 : (initialization)
     Input surface model M and points Q.
     Build an appropriate data structure (e.g., octree, kD tree) T
           to facilitate finding the closest point matching search.

     n ← 0 
     I← ,1,{ }
     C← , point on m1,{ }
     D← , ck − F0 i

qk ,{ }
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Outline of a practical ICP code 

       

Step 1: (matching)
     A ←∅;   B←∅
     For k ←1 step 1 to N  do

           
begin
ck ,ik ,dk⎡⎣ ⎤⎦ ←FindClosestPoint Fn i

qk ,ik ,dk ,T( );
                     // Note: develop first with simple
                     //           search.  Later make more
                     //           sophisticated, using T
if (dk<ηn ) then { put qk  into A;  put ck  into B; }; 
                    // See also subsequent notes  
end
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Outline of a practical ICP code 

       

Step 2 : (transformation update)
    n ← n +1
    Fn ←FindBestRigidTransformation(A,B)

     σn ←
ek ⋅
ekk∑

NumElts(E)
;   εmax( )n

←max
        k

ek ⋅
ek ;  εn ←

ek ⋅
e

kk∑
NumElts(E)

Step 3 : (adjustment)
     Compute ηn  from η0 ,,ηn−1{ }   // see notes next page

     // May also update Fn  from F0 ,,Fn{ }   (see Besl & McKay)

Step 4 : (iteration)
     if TerminationTest( σ0 ,,σn{ }, εmax( )0

,, εmax( )n
, ε0 ,, εn{ }{ }) 

     then stop.  Otherwise, go back to step 1  // see notes      
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Outline of practical ICP code 

     

Threshold ηn update

The threshold ηn  can be used to restrict the influence of 
clearly wrong matches on the computation of Fn.  
Generally, it should start at a fairly large value and then
decrease after a few iterations.  One not unreasonable
value might be something like 3 ε( )n

.  If the number

of valid matches begins to fall significantly, one can
increase it adaptively.  Too tight a bound may encourage false
minima

Also, if the mesh is incomplete, it may be advantageous
to exclude any matches with triangles at the edge of the 
mesh. 
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Outline of practical ICP code 

( ),

1

n n max

n

n-1

There are no hard and fast rules for deciding when
to terminate the procedure.  One criterion might be
to stop when  and/or  are less than desired 

thresholds and  for

Termination test

n
σ ε ε

εγ ≤ ≤ε  some value   (e.g., .95)

for several iterations.

γ γ ≅
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Digression: Finding Point Pairs 

Click here 
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Distance Maps 

•  Many authors  

•  Somewhat related to ICP 

•  Basic idea is to precompute the distance to the 
surface for a dense sampling of the volume. 

•  Then use the gradient of the distance map to 
compute an incremental motion that reduces the sum 
of the distances of all the moving points to the 
surface. 

•  Then iterate  
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Distance Maps (Continued) 

Copyright © R. Taylor 2004-2011 

Distance Maps: step 0 

2 

10 8 3 3 9 

0 -2 -7 -7 

14 
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Distance Maps: step 1 

2 

10 8 3 3 9 

0 -2 -7 -7 

14 
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Distance Maps: step 1 

2 

10 8 3 3 9 

0 -2 -7 -7 

14 
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Distance Maps: step 2 

2 

10 8 3 3 9 

0 -2 -7 -7 

14 
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Distance Maps: step 3 

2 

10 8 3 3 9 

0 -2 -7 -7 

14 
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Distance Maps: Iteration Step 
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A contour-based 2D-3D method … 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Given 
–  3D surface model of an 

anatomic structure 
–  Multiple 2D x-ray projection 

images taken at known 
poses relative to some 
coordinate system C 

–  Initial estimate of the pose F 
of the anatomic object 
relative to the x-ray imaging 
coordinate system C  

Goal 
–  Compute an accurate value 

for F  



38 

Copyright © R. Taylor 2004-2011 

A countour-based 2D-3D method … 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Step 0: Extract contours from  x-ray images and compute 
corresponding lines between source and detector 
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A countour-based 2D-3D method … 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Step 1: Given the current estimate for 
F = [R,t] , compute the 
apparent projection contours 
of the model for each viewing 
direction. 

Step 2: For each x-ray path line line 
Li, identify the closest point pi 
on an apparent projection 
contour.  This will give a set of 
points on the body surface to 
be moved toward the 
corresponding x-ray lines 
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A countour-based 2D-3D method … 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

  

p

  

c

   Line direction  

v     (


v = 1)

    Distance d = (

x-

c) ×

v

   

Note: It is convenient to use the x-ray source position 
(i.e., the center of convergence for a bundle of x-ray 
projection lines) as the value for 


c.  
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A countour-based 2D-3D method … 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Step 3: Solve an optimization problem to compute a value 
of F that minimizes the distance between the pi 
and the Li. 

Step 4: Iterate steps 1-3 until reach convergence 

    

min
R,

t

di
2

i
∑ = min

R,

t


v i × ci − R


pi +

t( )( ) 2

i
∑

= min
R,

t

skew

v i( ) • ci − R


pi +

t( )( ) 2

i
∑
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Computational Note 

   

Gueziec uses the Cayley parameterization for rotations:

      R(

u)= I-skew(


u)( ) I+skew(


u)( )−1

This leads to the approximation
     R(


u) ≈ I+skew(2


u)

which is similar to our familiar R(
α) ≈ I+skew(

α).

He also uses the notation U=skew(

u).  So R(


u) = (I−U)(I+U)−1

Similarly, we will see V=skew(

v), etc. 
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

A countour-based 2D-3D method … 
Gueziec et al., 1998 

Gueziec compared three different methods for 
performing the minimization in Step 3: 

–  Levenberg Marquardt (LM) nonlinear minimization. 

–  Linearization and constrained minimization 

–  Use of a Robust M-Estimator 
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Levenberg-Marquardt … 
 (Following development in Gueziec et al., 1998) 

    

Define fi (

x) = Vi


ci −R(


u)

pi −

t( )    where 


xt =[

ut ,

t t ],Vi = skew(


v i )

Our goal is to minimize

            ε(

x)= fi (


x)2 =

i
∑ Vi


ci −R(


u)

pi −

t( ) 2

i
∑

We note that ε(

x) is nonlinear.  Levenberg-Marquardt is a widely 

used optimization method for problems of this type.  However, it requires
us to evaluate the partial derivitives ∂fi / ∂xj .  Gueziec worked these out 

symbolically for his problem
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Levenberg-Marquardt … 
 (Following development in Gueziec et al., 1998) 

    

Define fi (

x) = Vi


ci −R(


u)

pi −

t( )    where 


xt =[

ut ,

t t ],Vi = skew(


v i )

J = 
∂fi
∂

x


⎡

⎣
⎢

⎤

⎦
⎥ = 

∂fi
∂

u
∂fi
∂

t



⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∂fi
∂

t
=

Vi
t Vi (R


pi − c +


t)

fi
∂fi
∂

u
=

∂R

pi

∂

u

⎛

⎝⎜
⎞

⎠⎟

t
Vi

t Vi (R

pi − c +


t)

fi

Details on this may be 
found in reference [45] of 
Gueziec’s paper 
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Levenberg-Marquardt … 
 (Following development in Gueziec et al., 1998) 

    

Step 1:  Pick λ  = a small number; pick initial guess for 

x

Step 2:  Evaluate fi (

x) and J and solve the least squares problem

                   


(JtJ+ λI)Δ

x − Jt fi


⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

0


⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

              for Δ

x.

Step 3:   

x ←


x +Δ

x;  update λ.

Step 4:   Evaluate termination condition.  If not done, go back to
              to step 2

Note: Usually λ  starts small and grows larger.  Consult standard 
references (e.g., Numerical Recipes) for more information.
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Constrained Linearized Least Squares … 
 (Following development in Gueziec et al., 1998) 

    

Step 0:  Make an initial guess for R  and 

t  

Step 1:  Compute 

pi ←R


pi +

t

Step 2:  Define Pi = skew(

pi ), Vi = skew(


v i )

Step 3:  Solve the least squares problem:

                   ε=min
 

2ViPi Vi

 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥


u
Δ

t

⎡

⎣
⎢

⎤

⎦
⎥ −


Vi (

ci −

pi )



⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  subject to 

u ≤ ρ

               where ρ is sufficiently small so that I+2U approximates a rotation 
Step 4:  Compute ΔR = (I−U)(I+U)−1 
             Update pi ← ΔRpi + Δ


t; R ← ΔRR;  


t ← ΔR


t + Δ

t

Step 5:  If ε  is small enough or some othe termination condition is met,
             then stop.  Otherwise go back to Step 2.
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers 
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers 
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers 
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outliers and give them 
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vol. 60, no. 3, pp. 313–342, 1994. 

Outliers 
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers excluded 
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers excluded 
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Robust Pose Estimation … 

•  Basic idea is to identify 
outliers and give them 
little or no weight. 

R. Kumar and A. R. Hanson, “Robust methods for estimating pose and 
a sensitivity analysis,” Comput. Vision, Graphics, Image Processing-IU, 
vol. 60, no. 3, pp. 313–342, 1994. 

Outliers excluded 
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Robust M-Estimator … 
 (Following development in Gueziec et al., 1998) 

    

Step 0:  Make an initial guess for R  and 

t  

Step 1:  Compute 

pi ←R


pi +

t

Step 2:  Define Pi = skew(

pi ), Vi = skew(


v i ), 

Step 3:  Solve a robust linearized problem

                   ε=min
u,Δt

ρ
i
∑ 0.6745 ei

median({e i })
⎛

⎝⎜
⎞

⎠⎟
  where ei= Vi (


pi − ci + 2Pi


u+ Δ


t  

              (See next slide) 
Step 4:  Compute ΔR = (I−U)(I+U)−1 
             Update pi ← ΔRpi + Δ


t; R ← ΔRR;  


t ← ΔR


t + Δ

t

Step 5:  If ε  is small enough or some othe termination condition is met,
             then stop.  Otherwise go back to Step 2.
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A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Robust M-Estimator … 
 (Following development in Gueziec et al., 1998) 

    

Step 3.0:  Set 

u =

0, Δt =


0 

Step 3.1:  Compute  ei = Vi (

pi −

ci + 2Pi


u+ Δ


t ,  s = median( ,ei ,{ }) / 0.6745,

Step 3.2:  Solve  C

x=

d, where 


xt = [


ut ,

t t ]

                           C = Ψ(
ei

s
)

2Pi WiPi Pi Wi

2Pi Wi Wi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑   and 

d= Ψ(

ei

s
)

Pi Wi (

ci −

pi )

Wi (

ci −

pi )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i

∑

                 where Wi = Vi
t Vi = I−


v iv i

t    Ψ(µ)= µ 1− µ2 /α 2( )2
 if µ ≤ α

       0      otherwise

⎧
⎨
⎪

⎩⎪
                                                                                         (Note :   We use α=2)   
Step 3.3:  Iterate steps 3.1 and 3.2 until a suitable termination condition
                is reached.
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A countour-based 2D-3D method … results 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Before After 
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A countour-based 2D-3D method … results 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 

Robust 

LM Linear 

Error vs noise and outliers 
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A contour-based 2D-3D method … times 
Gueziec et al., 1998 

A. Guéziec, P. Kazanzides, B. Williamson, and R. Taylor, "Anatomy-
Based Registration of CT-Scan and Intraoperative X-Ray Images for 
Guiding a Surgical Robot," IEEE Transactions on Medical Imaging, vol. 
17, pp. 715-728, 1998. 
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Sample Set Analysis 

•  Question: How good is a particular set of 3D sample 
points for the purpose of registration to a 3D surface? 

•  Long line of authors have looked at this question 

•  Next few slides are based on the work of David 
Simon, et al (1995) 
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Sample Set Analysis: Distance Estimates 
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Sample set analysis: sensitivity 
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Sample set analysis: sensitivity 
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Sample Set Analysis: Goodness Measures 

Copyright © R. Taylor 2004-2011 

Sample Set Selection 

•  One blind search method (similar to Simon, 1995) is: 

–  Randomly select sample points on surface 

–  (prune for reachability) 

–  evaluate goodness of sample set using some 
criterion 

–  repeat many times and choose the best one found 



52 

Copyright © R. Taylor 2004-2011 

Sample Set Selection 

•  Refinement of blind search (hill climbing): 

–  Randomly select sample points on surface 
–  (prune for reachability) 
–  evaluate goodness of sample set using some criterion 
–  replace a point from sample set with a randomly 

selected point 
–  evaluate goodness 
–  if better, keep it 
–  else revert to original point and try again 

•  Variations include simulated annealing, “genetic” 
algorithms 

Copyright © R. Taylor 2004-2011 

Sample Set Selection: Another Alternative 
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Sample Set Selection: Another Alternative (con’d) 

Copyright © R. Taylor 2004-2011 

Related concept: Estimation with Uncertainty 

    	  

Suppose you know something about the uncertainty of the sample data
at each point pair (e.g., from sensor noise and/or model error).  I.e., 
     

ak ∈Ak ;  


bk ∈Bk ;  cov(Ak ,Bk ) = Ck = QkΛkQk

T

Then an appropriate distance metric is the Mahalabonis distance
    D(


ak ,

bk ) = (


ak −


bk )T Ck

−1(

ak −


bk ) =


dk

TΛk
−1

dk

where
    

dk = Qk

T (

ak −


bk )

This approach is readily extended to the case where the samples are not
independent.
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Intensity-based methods 
Image 1 

Image 2 Θ(ρ,Image 2) 

Θ(ρ,·) 

E(·,·) 
Optimization 

Process 

ρ* 

ρ*=argmin E(Im 1, Θ(ρ,Im 2) 
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Intensity-based methods 

•  Typically performed between images 

•  The “features” in this case are the intensities 
associated with pixels (2D) or voxels (3D) in the 
images. 

•  General framework: 

•  Methods differ mostly in choice of transformation 
function Θ(·) and Energy function E(·,·), 

     

ρ* = min

ρ
E Image1,Θ


ρ,Image2( )( )
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Typical energy functions 
(not an exhaustive list) 

    

Normalized image subtraction

E(Im1,Im2) =
Im1 k⎡
⎣⎢
⎤
⎦⎥
−Im2 k⎡

⎣⎢
⎤
⎦⎥

max
j

Im1 j⎡
⎣⎢
⎤
⎦⎥
−Im2 j⎡

⎣⎢
⎤
⎦⎥( )k∑

Normalized cross correlation

E(Im1,Im2) =
Im1 k⎡
⎣⎢
⎤
⎦⎥
−avg(Im1)( ) Im2 k⎡

⎣⎢
⎤
⎦⎥
−avg(Im2)( )k∑

Im1 k⎡
⎣⎢
⎤
⎦⎥
−avg(Im1)( )

2

Im2 k⎡
⎣⎢
⎤
⎦⎥
−avg(Im2)( )

2

k∑k∑
Mutual information

E(Im1,Im2) = Pr(p,q)logPr(p,q)−PrIm1
(p)logPrIm1

(p)−PrIm2
(q)logPrIm2

(q)
p∈Im1q∈Im2

∑
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Mutual Information 

•  First proposed independently in 1995 by Collignon 
and Viola & Wells. 

•  Very widely practiced 

•  Is able to co-register images with very different 
sensor modalities so long as there is a stable 
relationship between intensities in one modality with 
those in another 

•  Many “flavors” and variations  
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Mutual Information  

( ) Pr( ) logPr( )
( , ) Pr( , ) logPr( , )

 (Viola & Wells '95, Colligen '95)
( , ) ( ) ( ) ( , )

 (Maes  '97)
( )( , )

H a a a
H a b a b a b

Similarity A B H A H B H A B
et al.

H ASimilarity A B

=
=

= + −

=

Entropy

Mutual Information

Normalized mutual information

1 2 1 2

( )
( , )

E(Im ,Im ) (Im ,Im )

H B
H A B

Similarity

+

=−
Objective function
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Rigid 3D/2D Registration 
Ofri Sadowsky 

Examples: LaRose, 
Zollei, … 

Optimizer: Downhill Simplex 

Prior CT 

Estimated 
position and 
orientation 

Patient under 
fluoroscopy 

Simulated 
images 

Patient images 
Similarity 
measure 

 (MI) 

Predict 
images 
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Rigid 3D/2D Registration 
Ofri Sadowsky 

Examples: LaRose, 
Zollei, … 

Optimizer: Downhill Simplex 

Prior CT 

Estimated 
position and 
orientation 

Patient under 
fluoroscopy 

Simulated 
images 

Patient images 
Similarity 
measure 

 (MI) 

Predict 
images 
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Deformable Registration to Statistical “Atlases” 

Deformable 2D/3D 
Ofri Sadowsky 

Deformable 3D/3D 
Jianhua Yao 
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Jianhua Yao 
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Deformable Altas-based Registration  

•  Much of the material that follows is derived from the Ph.D. thesis 
work of J. Yao, Ofri Sadowsky, and Gouthami Chintalapani: 

–  J. Yao, “Statistical bone density atlases and deformable medical image 
registrations”, Ph. D. Thesis, Computer Science, The Johns Hopkins 
University, Baltimore, 2001. 

–  O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of 
Bone Anatomy Using a Statistical Shape Atlas,” Ph.D. Thesis, Computer 
Science, The Johns Hopkins University, Baltimore, 2008"

–  G. Chintalapani, Statistical Atlases of Bone Anatomy and Their 
Applications, Ph.D. thesis in Computer Science, The Johns Hopkins 
University, Baltimore, Maryland, 2010. 

•  A number of other authors, including 
–  Cootes et al. 1999 – “Active Appearance Models” 
–  Feldmar and Ayache 1994 
–  Ferrant et al. 1999 
–  Fleute and Lavallee 1999 
–  Lowe 1991 
–  Maurer et al. 1996 
–  Shen and Davatzikos 2000 
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•  An atlas that incorporates statistics of anatomical 
shape and intensity variations of a given population 

What is a “Statistical Atlas” ? 

Statistical 
Information 
of shape, 

intensity etc 

Credit: G. Chintalapani 2010 

Copyright © R. Taylor 2004-2011 

Statistical Atlases 

CT scans from a 
population 

Shape 
distribution 

Intensity 
distribution 

?? 

Slide Credit: G. Chintalapani 2010 
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Deformable Altas-based Registration  

•  Much of the material that follows is derived from the Ph.D. thesis 
work of J. Yao and Ofri Sadowsky: 

–  J. Yao, “Statistical bone density atlases and deformable medical image 
registrations”, Ph. D. Thesis, Computer Science, The Johns Hopkins 
University, Baltimore, 2001. 

–  O. Sadowsky, "Image Registration and Hybrid Volume Reconstruction of 
Bone Anatomy Using a Statistical Shape Atlas,” Ph.D. Thesis, Computer 
Science, The Johns Hopkins University, Baltimore, 2008 

–  G. Chintalapani, Statistical Atlases of Bone Anatomy and Their 
Applications, Ph.D. thesis in Computer Science, The Johns Hopkins 
University, Baltimore, Maryland, 2010. 

•  A number of other authors, including 
–  Cootes et al. 1999 – “Active Appearance Models” 
–  Feldmar and Ayache 1994 
–  Ferrant et al. 1999 
–  Fleute and Lavallee 1999 
–  Lowe 1991 
–  Maurer et al. 1996 
–  Shen and Davatzikos 2000 

Digression on  
“active appearance models” 
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template image 
Training database of medical images 

Parameterized representation of 
medical images 

Aligned images in correspondence to 
the template 

Statistical model/atlas 

3.  Statistical Analysis 

2.  Model Correspondence/Alignment 

1.  Model Representation/Parameterization 

Atlas Construction 

Points, landmarks, meshes, 
parametric models, level sets  

Rigid, affine, deformable 
registration methods 

PCA, ICA, Kernel PCA, 
non- linear statistical 

methods 
Slide Credit: G. Chintalapani 2010 
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Model Representation 

  Tetrahedral mesh represents shape 

  Bernstein polynomials approximate CT density 
within each tetrahedron[1,2] 

where 

[1] Yao, PhD Thesis, 2002; [2] Sadowsky, PhD Thesis, 2008 
Credit: G. Chintalapani 2010 
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Model Creation 

CT dataset Labelled CT 

Mesher[2] 

 Segmentation of pelvis anatomy using Analyze[1] 

Surface rendering of pelvis tetrahedral model; Cross-section of 
tetrahedral model showing CT densities 

[1]Analyze, www.mayoclinic.org 

[2] Mohammed et al., 2005  

Slide Credit: G. Chintalapani 2010 
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•  Need to establish a common coordinate frame for the 
training database 

•  Need to establish point correspondence between the 
training datasets 

Model Correspondence 

Slide Credit: G. Chintalapani 2010 
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•  Automatic deformable registration based shape correspondences 

Model Shape Correspondences 

Flowchart for establishing shape correspondences for the training 
sample 

Mesher 

3D/3D 

registration 

Template  

CT 

Training  

CT  

Data sets 

Template  

Mesh 

Deformation 

Field 

Warped 

Volumes 

Mesh  

Instances  

for training  

data sets 

Apply  

Deformation  

Field 

[1] Rueckert et al., MICCAI 03 

Slide Credit: G. Chintalapani 2010 
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Model Intensity Correspondences 

•  Automatic deformable registration based correspondences 

Flowchart for establishing intensity correspondences for the training 
sample 

Mesher 

3D/3D 
registration 

Template  

CT 

Training  

CT  

Data sets 

Template  

Mesh 

Shape-Free 

Warped CT 

Deformation 

Field 

Polynomial 

Coefficients (C)  

for training  

CT data sets 

Fit 

Polynomial 

Mohamed et al. ISBI 
2004 

Ellingsen et al.  

JBMI 2009 
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Principal Component Analysis 

•  Given the mesh instances of training sample, 

•  Compute mean and subtract the mean from the sample 

•  Compute  

With principal components in U and eigen values   

Slide Credit: G. Chintalapani 2010 
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Principal Component Analysis 

•  Given the PCA model, any data instance can be 
expressed as a linear combination of the principal 
components 

•  Compact model  fewer components  

•  Select first ‘d’ components represented by the ‘d’ eigen 
values 

Slide Credit: G. Chintalapani 2010 
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Statistical Shape and Intensity Models 

•  Shape statistical model: Mesh vertices become data 
matrix 

•  Intensity statistical model: Polynomial coefficients 
become data matrix 

Slide Credit: G. Chintalapani 2010 
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Statistical Atlases & PCA 

     

Given a set of N models 

X( j) =


xk

( j )⎡
⎣⎢

⎤
⎦⎥
T

= xk
( j ),yk

( j ),zk
( j ),⎡

⎣⎢
⎤
⎦⎥ ,  compute  

 

X(avg) =



xk

(avg )



⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  where 

xk

(avg ) =
1
N


xk

( j )

j
∑  and the differences


D( j ) =


X( j)−


X(avg) =



dk

( j )



⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

where 

dk

( j ) =

xk

( j )−

xk

(avg ).  Create the matrix

 

D = 

D( j ) ⎡

⎣⎢
⎤
⎦⎥ 3Nvertices×N⎡
⎣⎢

⎤
⎦⎥
=


d1

(1)



dk

(1)



dNvertices

(1)








dk

(1)



dk

( j )



dNvertices

( j )








d1

(1)



dk

(N )



dNvertices

(N )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Statistical Atlases & PCA 

      

Compute the singular value decomposition of D
  

D = UΣVT where Σ=
diag( σ)

0
 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

D = U diag( σ)VT

0
 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Note that 
1
N

DTD =
1
N

VΣUTUΣVT =
1
N

VΣ2VT

1
N

DDT =
1
N

UΣVT VΣUT =
1
N

UΣ2UT
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Statistical Atlases & PCA 

      

Any individual model D( j )   can be written as a linear combination of the 

rows of U.  Treating 

D( j )  as a column vector, we can write this as

D
( j )

= U•

λ1
( j )



λN
( j )


0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   where 

λ1
( j )



λN
( j )


0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  is the j th  column of diag( σ)VT

0
 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

If we define 
M = U(1)  U(N )⎡

⎣⎢
⎤
⎦⎥   (i.e., the first N  columns of U)

we get the expression

D
( j )

= M

λ   where 


λ  is the j th  column of diag( σ)VT( ).
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Statistical Atlases & PCA 

     

Note that while U is 3Nvertices×3Nvertices  (i.e.,  huge), M has only the first
N  columns, since there are at most N  non-zero singular values

In fact, we usually also truncate even more, only saving columns
corresponding to relatively large singular values σi .  Since the standard
algorithms for SVD produce positive singular values σi sorted in descending
order, this is easy to do. 

Note also, that since the columns of M are also columns of U, they are
orthogonal.  Hence MTM = IN×N .  But MMT = C will be an 
3Nvertices×3Nvertices  matrix that will not in general be diagonal.
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As a practical matter, it is  not a good idea to ask your SVD program
to produce the full matrix U for an 3Nvertices×N  matrix D.  Most SVD
packages give you the option to compute only the singular values σ
and the right hand side matrix V or its transpose.  Then, M  can be
computed from 

Mdiag( σ)VT = D
Mdiag( σ) = DV

M = DVdiag( σ)−1

= DV

1/ σ1 0   0
0  

 1/ σk 

  0
0   0 1/ σN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Similarly,  given a vector 

D(inst)  we can find

a corresponding vector 

λ (inst)  from the following 

 

D(inst) = M


λ (inst)

MT

D(inst) = MTM


λ (inst)

=

λ ( inst )
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Suppose that we select  

λ = [λ1,,λN ]T  as a random variable with some 

distribution having expected value E(

λ) =


0 and covariance

cov(

λ) = E(


λ •

λT ) =

E(λ1
2 )  E(λ1λN )
  

E(λNλ1)  E(λN
2 )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=Σ2

and compute a corresponding random model 

X( 

λ)


X (

λ) =


X(avg ) +M•


λ   

What can we say about the expected value and covariance of 

X( 

λ)?
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For the expected value, we have

E(

X(

λ)) = E(


X(avg ) +M•


λ)

=

X(avg ) +M• E(


λ)

=

X(avg )

Then 

cov(

X(

λ)) = E(


D(

λ)•

D(

λ)T )   where   


D(

λ) =


X(

λ)−


X(avg )

= E(M•

λ •

λT •M)

= M• E(

λ •

λT )•MT

= M•Σ2 •MT
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Thus, if we assemble a representative sample set of models 

X( j ), and 

compute the average model 

X(avg )  and the 

SVD of the corresponding matrix D = 

X( j )−


X(avg )( )⎡

⎣⎢
⎤
⎦⎥
, then

we have a way of generating an arbitrary number of models 

          

X(inst)=


X(avg )+M


λ ( inst )=


X(avg )+


M(k )λk

( inst )
k∑

with the same mean and covariance.   I.e., we know how the 
individual features 


xk

(inst)  co-vary. 

Further, given a representative model instance 

X( inst )  we can

compute a corresponding set of mode weights 

λ (inst)  from

     

λ (inst) = MT


X( inst )−


X(avg )( )
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Thus, one representation of a statistical "atlas" of models consists of

• An average model 

X(avg )

• An eigen matrix V of variation modes
• A diagonal covariance matrix Σ2  for the modes 

This information may be used in many ways, including
• Atlas-based deformable segmentation/registration
• Statistical analysis of anatomic variation
• etc. 
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Deformable Registration Between Density 
Atlas and Patient CT 

•  Goal: Register and Deform the statistical density atlas 
to match patient anatomy 

•  Significance: 
–  Building patient specific model with same topology (mesh 

structure) as the atlas 

–  Automatic segmentation 

–  Accumulatively building models for training set 

–  Pathological diagnosis 

Jianhua Yao 
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Deformable Registration Scheme 

•  Affine Transformation 
–  Translation T=(tx, ty, tz) 

–  Rotation R=(rx, ry, rz) 
–  Scale S=(sx, sy, sz) 

•  Global Deformation  
–  Statistical deformation mode (Mi) 

•  Local Deformation 
–  Adjustment of every vertex 

Jianhua Yao 
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Optimization Algorithm 

•  Direction Set (Powell’s) methods in multi-dimensions 
–  Search the parameter space to minimize the cost functions 

–  Advantage 
•  Don’t need to compute derivative of cost functions 

•  Much fewer evaluations than downhill simplex methods 

Jianhua Yao 
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Energy Function 

•  To measure the density and shape difference 
between model and image 
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Jianhua Yao 
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Local Deformation 

•  Motivation: Statistical deformation can’t capture all 
the variability due to the limited number of models in 
the training set 

•  Locally adjust the location of vertices to match the 
boundary of the bone and the interior density 
property 

•  Use multiple-layer flexible mesh template matching to 
find the correspondence between model vertices and 
image voxels 

Jianhua Yao 
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Multiple-layer Flexible Mesh Template 
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•  Each vertex on the model 
defines a mesh template 

•  Template is in the form  
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Jianhua Yao 
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Results (Affine Transformation) 

Initial Intermediate Final  
Jianhua Yao 
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Results (Global Deformation) 

Initial Intermediate Final  
Jianhua Yao 



74 

Copyright © R. Taylor 2004-2011 

Results (Local Deformation) 

Initial Intermediate Final  
Jianhua Yao 
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Jianhua Yao 

Deformable Atlas-to-CT Registration (3D-3D) 
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Results (Deformable Registration) 
Deformable Atlas/CT Registration
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Jianhua Yao 
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Deformable registration between density 
atlas and a set of 2D X-Rays 

•  Goal: Register and Deform the statistical density atlas 
to match intraoperative x-rays 

•  Significance: 
–  Build virtual patient specific CT without real patient CT  

–  Register pre-operative models and intra-operative images 

–  Map predefined surgical procedure and anatomical 
landmarks into intra-operative images 

Jianhua Yao 
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Deformable 3D/2D Registration 
Ofri Sadowsky 

Following earlier  
method of Yao et al. 

Optimizer: Downhill Simplex 

Prior Atlas 

Estimated 
position and 
orientation 

Patient under 
fluoroscopy 

Simulated 
images 

Patient images 
Similarity 
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2D-3D Reconstruction from 3 DEXA Images 

Hologic, Inc. 

Omar Ahmad, et al. 
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2D-3D Reconstruction from 3 DEXA Images+Atlas 

JHU: Omar Ahmed, Ofri Sadowsky, Russell Taylor 
U. Erlangen: Klaus Engelke 
BIDMC, Boston: Mary Bouxsein 

Inst. of Aging Research, Boston: David Karasik 
Hologic, Inc.: Krishna Ramamurthi, Kevin Wilson 
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2D-3D Reconstruction from 3 DEXA Images+Atlas 

Subject-Reconstruction 

Subject 

Recon. 
Mesh 

(Green) 

Subject 
Mesh 
(Red) 

JHU: Omar Ahmed, Ofri Sadowsky, Russell Taylor 
U. Erlangen: Klaus Engelke 
BIDMC, Boston: Mary Bouxsein 
Inst. of Aging Research, Boston: David Karasik 
Hologic, Inc.: Krishna Ramamurthi, Kevin Wilson 
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Femur model from three 2D DXA images 

JHU: Omar Ahmed, Ofri Sadowsky, Russell Taylor 
U. Erlangen: Klaus Engelke 
BIDMC, Boston: Mary Bouxsein 

Inst. of Aging Research, Boston: David Karasik 
Hologic, Inc.: Krishna Ramamurthi, Kevin Wilson 


