

Sampled 3D data to surface models Outline:

- Select large number of sample points
- Determine distance function d_S(f, F) for a point f to a surface feature F.
- Use d_s to develop disparity function D.

Examples

- Head-in-hat algorithm, [Lovin et al., 1988; Felivewii et al., 1989]
- Distance maps [e.g., Lavallee et al]
- Iterative closest point [Bos! and McKay, 1992]

Minimizing Rigid Registration Errors

Typically, given a set of points $\{a_i\}$ in one coordinate system and another set of points $\{b_i\}$ in a second coordinate system Goal is to find $[\mathbf{R}, \mathbf{p}]$ that minimizes

$$\eta = \sum_i \mathbf{e}_i \bullet \mathbf{e}_i$$

where

$$\mathbf{e}_i = (\mathbf{R} \bullet \mathbf{a}_i + \mathbf{p}) - \mathbf{b}_i$$

This is tricky, because of **R**

Copyright © R. Taylor 2004-2011

Solving for R: iteration method Given $\{\cdots, (\tilde{a}_i, \tilde{b}_i), \cdots\}$ want to find $\mathbf{R} = \arg \min \sum_i (\mathbf{R} \tilde{a}_i - \tilde{b}_i)$ Step 0: Make an initial guess \mathbf{R}_0 Step 1: Given \mathbf{R}_k , compute $\breve{b}_i = \mathbf{R}_k^{-1} \tilde{b}_i$ Step 2: Compute $\Delta \mathbf{R}$ that minimizes $\sum_i (\Delta \mathbf{R} \tilde{a}_i - \breve{b}_i)^2$ Step 3: Set $\mathbf{R}_{k+1} = \mathbf{R}_k \Delta \mathbf{R}$ Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

Outline of practical ICP code

Threshold η_n update

The threshold η_n can be used to restrict the influence of clearly wrong matches on the computation of \mathbf{F}_n . Generally, it should start at a fairly large value and then decrease after a few iterations. One not unreasonable value might be something like $3(\overline{\epsilon})_n$. If the number of valid matches begins to fall significantly, one can increase it adaptively. Too tight a bound may encourage false minima

Also, if the mesh is incomplete, it may be advantageous to exclude any matches with triangles at the edge of the mesh.

Copyright © R. Taylor 2004-2011

Distance Maps: Iteration Step

- 1. Determine cell \mathcal{V}_i for each $\mathbf{p}_i = \mathbf{T} \cdot \mathbf{f}_i$. Let $\overline{\lambda}_i$ be the corresponding interpolation parameters for \mathbf{p}_i within cell.
- Determine small motion ΔT that minimizes

$$\sum_{i} \left[(\Delta \mathbf{T} \mathbf{p}_{i} - \mathbf{p}_{i}) \cdot \nabla d_{S}(\overline{\lambda_{i}}, \mathcal{V}_{i}) \right]$$

Οľ

$$\Sigma [-[(\Delta \mathbf{T} \mathbf{p}_i + \mathbf{p}_i) \cdot \nabla d_S(\widetilde{\lambda_{i_i}} \mathcal{V}_i)]]$$

3. Update $\mathbf{T} \leftarrow \Delta \mathbf{T} \bullet \mathbf{T}$

Copyright © R. Taylor 2004-2011

TABLE I			
REGISTRATION METHODS	APPLIED TO	DATA SET.	s That
COMPRISE 100 POINTS (T	OP) AND 20	POINTS (B	оттом)
Number Points/Method	LM	Linear	Robust
100 points (CPU time)	790	690	28
20 points (CPU time)	200	42	9.6
100 points (CPU time) 20 points (CPU time)	790 200	690 42	28 9.6

Copyright © R. Taylor 2004-2011

Statistical Atlases & PCA

Note that while **U** is $3N_{vertices} \times 3N_{vertices}$ (i.e., huge), **M** has only the first *N* columns, since there are at most *N* non-zero singular values

In fact, we usually also truncate even more, only saving columns corresponding to relatively large singular values σ_i . Since the standard algorithms for SVD produce positive singular values σ_i sorted in descending order, this is easy to do.

Note also, that since the columns of **M** are also columns of **U**, they are orthogonal. Hence $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{I}_{_{N\times N}}$. But $\mathbf{M}\mathbf{M}^{\mathsf{T}} = \mathbf{C}$ will be an $3N_{_{vertices}} \times 3N_{_{vertices}}$ matrix that will not in general be diagonal.

Copyright © R. Taylor 2004-2011

Substituting the probability of the probability of

Deformable registration between density atlas and a set of 2D X-Rays

- Goal: Register and Deform the statistical density atlas to match intraoperative x-rays
- Significance:
 - Build virtual patient specific CT without real patient CT
 - Register pre-operative models and intra-operative images
 - Map predefined surgical procedure and anatomical landmarks into intra-operative images

Jianhua Yao Copyright © R. Taylor 2004-2011

