Point cloud to point cloud rigid transformations

Russell Taylor

600.445

Minimizing Rigid Registration Errors

Typically, given a set of points $\left\{\mathbf{a}_{i}\right\}$ in one coordinate system and another set of points $\left\{\mathbf{b}_{i}\right\}$ in a second coordinate system Goal is to find $[\mathbf{R}, \mathrm{p}]$ that minimizes

$$
\eta=\sum_{i} \mathbf{e}_{i} \bullet \mathbf{e}_{i}
$$

where

$$
\mathbf{e}_{i}=\left(\mathbf{R} \bullet \mathbf{a}_{i}+\mathbf{p}\right)-\mathbf{b}_{i}
$$

This is tricky, because of \mathbf{R}.

Point cloud to point cloud registration

Minimizing Rigid Registration Errors

Step 1: Compute

$$
\begin{array}{ll}
\overline{\mathbf{a}}=\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{a}}_{i} & \overline{\mathbf{b}}=\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{b}}_{i} \\
\tilde{\mathbf{a}}_{i}=\overrightarrow{\mathbf{a}}_{i}-\overline{\mathbf{a}} & \tilde{\mathbf{b}}_{i}=\overrightarrow{\mathbf{b}}_{i}-\overline{\mathbf{b}}
\end{array}
$$

Step 2: Find \mathbf{R} that minimizes

$$
\sum_{i}\left(\mathbf{R} \cdot \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Find $\overrightarrow{\mathbf{p}}$

$$
\overrightarrow{\mathbf{p}}=\overline{\mathbf{b}}-\mathbf{R} \cdot \overline{\mathbf{a}}
$$

Step 4: Desired transformation is

$$
\mathbf{F}=\operatorname{Frame}(\mathbf{R}, \overrightarrow{\mathbf{p}})
$$

Solving for R: iteration method

Given $\left\{\cdots,\left(\tilde{\mathbf{a}}_{i}, \tilde{\mathbf{b}}_{i}\right), \cdots\right\}$, want to find $\mathbf{R}=\arg \min \sum_{i}\left(\mathbf{R} \tilde{\mathbf{a}}_{i}-\tilde{\mathbf{b}}_{i}\right)$

Step 0: Make an initial guess \mathbf{R}_{0}
Step 1: Given \mathbf{R}_{k}, compute $\breve{\mathbf{b}}_{i}=\mathbf{R}_{k}{ }^{-1} \tilde{\mathbf{b}}_{i}$
Step 2: Compute $\Delta \mathbf{R}$ that minimizes

$$
\sum_{i}\left(\Delta \mathbf{R} \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2}
$$

Step 3: Set $\mathbf{R}_{k+1}=\mathbf{R}_{k} \Delta \mathbf{R}$
Step 4: Iterate Steps 1-3 until residual error is sufficiently small (or other termination condition)

Iterative method: Getting Initial Guess

We want to find an approximate solution \mathbf{R}_{0} to

$$
\mathbf{R}_{0} \cdot\left[\cdots \tilde{\mathbf{a}}_{i} \cdots\right] \approx\left[\cdots \tilde{\mathbf{b}}_{i} \cdots\right]
$$

One way to do this is as follows. Form matrices

$$
\mathbf{A}=\left[\cdots \tilde{\mathbf{a}}_{i} \cdots\right] \quad \mathbf{B}=\left[\cdots \tilde{\mathbf{b}}_{i} \cdots\right]
$$

Solve least-squares problem $\mathbf{M}_{3 \times 3} \mathbf{A}_{3 \times N} \approx B_{3 \times N}$
Note : You may find it easier to solve $\mathbf{A}_{3 \times N}^{\top} \mathbf{M}_{3 \times 3}^{\top} \approx \mathbf{B}_{3 \times N}^{\top}$ Set $\mathbf{R}_{0}=$ orthogonalize $\left(\mathbf{M}_{3 \times 3}\right)$. Verify that \mathbf{R} is a rotation
Our problem is now to solve $\mathbf{R}_{0} \Delta \mathbf{R A} \approx B$. I.e., $\Delta \mathbf{R A} \approx \mathbf{R}_{0}^{-1} B$

Iterative method: Solving for ΔR

Approximate $\Delta \mathbf{R}$ as $(\mathbf{I}+\operatorname{skew}(\bar{\alpha}))$. I.e.,
$\Delta \mathbf{R} \bullet \mathbf{v} \approx \mathbf{v}+\bar{\alpha} \times \mathbf{v}$
for any vector \mathbf{v}. Then, our least squares problem becomes

$$
\min _{\Delta \mathbf{R}} \sum_{i}\left(\Delta \mathbf{R} \bullet \tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}\right)^{2} \approx \min _{\bar{\alpha}} \sum_{i}\left(\tilde{\mathbf{a}}_{i}-\breve{\mathbf{b}}_{i}+\bar{\alpha} \times \tilde{\mathbf{a}}_{i}\right)^{2}
$$

This is linear least squares problem in $\bar{\alpha}$.

Then compute $\Delta \mathbf{R}(\bar{\alpha})$.

Direct Techniques to solve for \mathbf{R}

- Method due to K. Arun, et. al., IEEE PAMI, Vol 9, no 5, pp 698-700, Sept 1987

Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{lll}
\tilde{a}_{i, x} \tilde{b}_{i, x} & \tilde{a}_{i, x} \tilde{b}_{i, y} & \tilde{a}_{i, x} \tilde{b}_{i, z} \\
\tilde{a}_{i, y} \tilde{b}_{i, x} & \tilde{a}_{i, y} \tilde{b}_{i, y} & \tilde{a}_{i, y} \tilde{b}_{i, z} \\
\tilde{a}_{i, z} \tilde{b}_{i, x} & \tilde{a}_{i, z} \tilde{b}_{i, y} & \tilde{a}_{i, z} \tilde{b}_{i, z}
\end{array}\right]
$$

Step 2: Compute the SVD of $\mathbf{H}=\mathbf{U S V}^{\mathbf{t}}$
Step 3: $\mathbf{R}=\mathbf{V U}^{\mathbf{t}}$
Step 4: Verify $\operatorname{Det}(\mathbf{R})=1$. If not, then algorithm may fail.

- Failure is rare, and mostly fixable. The paper has details.

Quarternion Technique to solve for \mathbf{R}

- B.K.P. Horn, "Closed form solution of absolute orientation using unit quaternions", J. Opt. Soc. America, A vol. 4, no. 4, pp 629-642, Apr. 1987.
- Method described as reported in Besl and McKay, "A method for registration of 3D shapes", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, February 1992.
- Solves a 4×4 eigenvalue problem to find a unit quaternion corresponding to the rotation
- This quaternion may be converted in closed form to get a more conventional rotation matrix

Digression: quaternions

Invented by Hamilton in 1843. Can be thought of as

4 elements:
scalar \& vector:
Complex number:

$$
\begin{aligned}
& \mathbf{q}= {\left[q_{0}, q_{1}, q_{2}, q_{3}\right] } \\
& \mathbf{q}=s+\overrightarrow{\mathbf{v}}=[s, \overrightarrow{\mathbf{v}}] \\
& \mathbf{q}= q_{0}+q_{1} i+q_{2} j+q_{3} k \\
& \text { where } i^{2}=j^{2}=k^{2}=i j k=-1
\end{aligned}
$$

Properties:

Linearity: $\quad \lambda \mathbf{q}_{1}+\mu \overrightarrow{\mathbf{q}}_{2}=\left[\lambda s_{1}+\mu s_{2}, \lambda \overrightarrow{\mathbf{v}}_{1}+\mu \overrightarrow{\mathbf{v}}_{2}\right]$
Conjugate: $\quad \mathbf{q}^{*}=s-\overrightarrow{\mathbf{v}}=[s,-\overrightarrow{\mathbf{v}}]$
Product: $\quad \mathbf{q}_{1} \circ \mathbf{q}_{2}=\left[s_{1} s_{2}-\overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{2}, s_{1} \overrightarrow{\mathbf{v}}_{2}+s_{2} \overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{v}}_{1} \times \overrightarrow{\mathbf{v}}_{2}\right]$
Transform vector: $\quad \mathbf{q} \circ \overrightarrow{\mathbf{p}}=\mathbf{q} \circ[0, \overrightarrow{\mathbf{p}}] \circ \mathbf{q}^{*}$
Norm: $\quad\|\mathbf{q}\|=\sqrt{s^{2}+\overrightarrow{\mathbf{v}} \bullet \overrightarrow{\mathbf{v}}}=\sqrt{q_{0}{ }^{2}+q_{1}{ }^{2}+q_{2}{ }^{2}+q_{3}{ }^{2}}$

Digression continued: unit quaternions

We can associate a rotation by angle θ about an axis $\overrightarrow{\mathbf{n}}$ with the unit quaternion:

$$
\operatorname{Rot}(\overrightarrow{\mathbf{n}}, \theta) \Leftrightarrow\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]
$$

Exercise: Demonstrate this relationship. I.e., show

$$
\operatorname{Rot}\left((\overrightarrow{\mathbf{n}}, \theta) \cdot \overrightarrow{\mathbf{p}}=\left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right] \circ[0, \overrightarrow{\mathbf{p}}] \circ\left[\cos \frac{\theta}{2},-\sin \frac{\theta}{2} \overrightarrow{\mathbf{n}}\right]\right.
$$

A bit more on quaternions

Exercise: show by substitution that the various formulations for quaternions are equivalent

A few web references:

http://mathworld.wolfram.com/Quaternion.html
http://en.wikipedia.org/wiki/Quaternion
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation http://www.euclideanspace.com/maths/algebra/
realNormedAlgebra/quaternions/index.htm

Rotation matrix from unit quaternion

$$
\begin{aligned}
\mathbf{q} & =\left[q_{0}, q_{1}, q_{2}, q_{3}\right] ;\|\mathbf{q}\|=1 \\
\mathbf{R}(\mathbf{q}) & =\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & 2\left(q_{1} q_{3}+q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}+q_{0} q_{3}\right) & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}-q_{0} q_{2}\right) & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right]
\end{aligned}
$$

Unit quaternion from rotation matrix

$\mathbf{R}(\mathbf{q})=\left[\begin{array}{ccc}r_{x x} & r_{y x} & r_{z x} \\ r_{x y} & r_{y y} & r_{z y} \\ r_{x z} & r_{y z} & r_{z z}\end{array}\right] ; \quad \begin{aligned} & a_{0}=1+r_{x x}+r_{y y}+r_{z z} ; a_{1}=1+r_{x x}-r_{y y}-r_{z z} \\ & a_{2}=1-r_{x x}+r_{y y}-r_{z z} ; a_{3}=1-r_{x x}-r_{y y}+r_{z z}\end{aligned}$

$a_{0}=\max \left\{a_{k}\right\}$	$a_{1}=\max \left\{a_{k}\right\}$	$a_{2}=\max \left\{a_{k}\right\}$	$a_{3}=\max \left\{a_{k}\right\}$
$q_{0}=\frac{\sqrt{a_{0}}}{2}$	$q_{0}=\frac{r_{y z}-r_{z y}}{4 q_{1}}$	$q_{0}=\frac{r_{z x}-r_{x z}}{4 q_{2}}$	$q_{0}=\frac{r_{x y}-r_{y x}}{4 q_{3}}$
$q_{1}=\frac{r_{x y}-r_{y x}}{4 q_{0}}$	$q_{1}=\frac{\sqrt{a_{1}}}{2}$	$q_{1}=\frac{r_{x y}+r_{y x}}{4 q_{2}}$	$q_{1}=\frac{r_{x z}+r_{z x}}{4 q_{3}}$
$q_{2}=\frac{r_{z x}-r_{x z}}{4 q_{0}}$	$q_{2}=\frac{r_{x y}+r_{y x}}{4 q_{1}}$	$q_{2}=\frac{\sqrt{a_{2}}}{2}$	$q_{2}=\frac{r_{y z}+r_{z y}}{4 q_{3}}$
$q_{3}=\frac{r_{y z}-r_{z y}}{4 q_{0}}$	$q_{3}=\frac{r_{x z}+r_{z x}}{4 q_{1}}$	$q_{3}=\frac{r_{y z}+r_{z y}}{4 q_{2}}$	$q_{3}=\frac{\sqrt{a_{3}}}{2}$

Rotation axis and angle from rotation matrix

Many options, including direct trigonemetric solution.
But this works:

```
\([\overrightarrow{\mathbf{n}}, \theta] \leftarrow\) ExtractAxisAngle \((\mathbf{R})\)
\{
        \([s, \overrightarrow{\mathbf{v}}] \leftarrow\) ConvertToQuaternion \((\mathbf{R})\)
            return \(([\overrightarrow{\mathbf{V}} /\|\overrightarrow{\mathbf{v}}\|, 2 \operatorname{atan}(\mathrm{~s} /\|\overrightarrow{\mathbf{v}}\|)\)
\}
```


Quaternion method for R

Step 1: Compute

$$
\mathbf{H}=\sum_{i}\left[\begin{array}{lll}
\tilde{a}_{i, x} \tilde{b}_{i, x} & \tilde{a}_{i, x} \tilde{b}_{i, y} & \tilde{a}_{i, x} \tilde{b}_{i, z} \\
\tilde{a}_{i, y} b_{i, x} & \tilde{a}_{i, y} \tilde{b}_{i, y} & \tilde{a}_{i, y} b_{i, z} \\
\tilde{a}_{i, z} b_{i, x} & \tilde{a}_{i, z} \tilde{b}_{i, y} & \tilde{a}_{i, z} b_{i, z}
\end{array}\right]
$$

Step 2: Compute

$$
\mathbf{G}=\left[\begin{array}{cc}
\operatorname{trace}(\mathbf{H}) & \Delta^{T} \\
\Delta & \mathbf{H}+\mathbf{H}^{T}-\operatorname{trace}(\mathbf{H}) \mathbf{I}
\end{array}\right]
$$

where $\Delta^{T}=\left[\begin{array}{lll}\mathbf{H}_{2,3}-\mathbf{H}_{3,2} & \mathbf{H}_{3,1}-\mathbf{H}_{1,3} & \mathbf{H}_{1,2}-\mathbf{H}_{2,1}\end{array}\right]$
Step 3: Compute eigen value decomposition of \mathbf{G} $\operatorname{diag}(\bar{\lambda})=\mathbf{Q}^{T} \mathbf{G Q}$
Step 4: The eigenvector $\mathbf{Q}_{k}=\left[q_{0}, q_{1}, q_{2}, q_{3}\right]$ corresponding to the largest eigenvalue λ_{k} is a unit quaternion corresponding to the rotation.

Non-reflective spatial similarity (rigid+scale)

Non-reflective spatial similarity

Step 1: Compute

$$
\begin{aligned}
\overline{\mathbf{a}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{a}}_{i} & \overline{\mathbf{b}} & =\frac{1}{N} \sum_{i=1}^{N} \overrightarrow{\mathbf{b}}_{i} \\
\tilde{\mathbf{a}}_{i} & =\overrightarrow{\mathbf{a}}_{i}-\overline{\mathbf{a}} & \tilde{\mathbf{b}}_{i} & =\overrightarrow{\mathbf{b}}_{i}-\overline{\mathbf{b}}
\end{aligned}
$$

Step 2: Estimate scale

$$
\sigma=\frac{\sum_{i}\left\|\tilde{\mathbf{b}}_{i}\right\|}{\sum_{i}\left\|\tilde{\mathbf{a}}_{i}\right\|}
$$

Step 3: Find \mathbf{R} that minimizes

$$
\sum\left(\mathbf{R} \cdot\left(\sigma \tilde{\mathbf{a}}_{i}\right)-\tilde{\mathbf{b}}_{i}\right)^{2}
$$

Step 4: Find $\overrightarrow{\mathbf{p}}$

$$
\overrightarrow{\mathbf{p}}=\overline{\mathbf{b}}-\mathbf{R} \cdot \overline{\mathbf{a}}
$$

Step 5: Desired transformation is

$$
\mathbf{F}=\operatorname{SimilarityFrame}(\sigma, \mathbf{R}, \overrightarrow{\mathbf{p}})
$$

