

"Image-Based Flexible Endoscope Steering"

R. Reilink, S. Stramigioli, S. Misra Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on , vol., no., pp.2339-2344, 18-22 Oct. 2010

> Liz Cha March 9, 2011

Project Goals

• Design, build, and test a clinical quality prototype robotic system to control a flexible endoscope with three degrees of motion.

ERC | CISST

Significance

- Creates a robotic system for control of a flexible endoscope
- Can be used with commercial endoscopes with 2 degrees of freedom for tip
- Uses computer vision algorithms to navigate endoscope ______

ERC | CISST

Summary of the Problem

- Insertion and navigation of endoscope requires dexterity and skill
- Control is not intuitive for the two degrees of tip freedom (two concentric circles)
- Steering is difficult and time consuming for surgeons, increasing time of procedure and complications

ciis

Design

- Pentax EG-2930K gastroscope
- Laptop computes set points for motor positions based on image
- Servo amplifiers control motors with external encoders

Control

- Dynamic image-based look-and-move structure
 - Control feature is center of lumen
 - Simple integral controller ($C_f = K/s$) with constant gain, K
 - Manually tuned gain on setup

Image Algorithms

- Required real time processing for use in feedback control loop
- Goal: Keep furthest part of the lumen centered in the image from the endoscope
 - Optical flow-based algorithm
 - Image intensity-based algorithm
- Tested each algorithm first in simulation and in an experimental setup using a phantom

Optical Flow-Based Image Processing

• Depth estimation

$$\begin{split} M &: \mathbb{R}^3 \to S^2; \quad \mathbf{p} \mapsto \frac{\mathbf{p}}{|\mathbf{p}|} \\ \mathbf{q} &:= M(\mathbf{\bar{p}}) \\ \lambda(\mathbf{q}) &: S^2 \to \mathbb{R} \\ \theta(\mathbf{q}) &:= \underbrace{-\mathbf{\Omega} \times \mathbf{q}}_{\theta_{\mathbf{R}}(\mathbf{q})} + \underbrace{\frac{-1}{\lambda(\mathbf{q})} \left(\mathbf{I} - \mathbf{q}\mathbf{q}^{\mathrm{T}}\right) \mathbf{V}}_{\theta_{\mathbf{T}}(\mathbf{q})} \end{split}$$

 $\begin{aligned} (\mathbf{I} - \mathbf{q}\mathbf{q}^{\mathrm{T}})\mathbf{V} \\ 1/\lambda(\mathbf{q}) \\ & \text{in } C, \ \theta_{\mathrm{T}}(\mathbf{q}) \approx 0 \\ \theta(\mathbf{q}) &\approx \theta_{\mathrm{R}}(\mathbf{q}) = -\mathbf{\Omega} \times \mathbf{q}. \end{aligned}$

Implementation

$$\begin{aligned} (\mathbf{u}_i, \mathbf{v}_i) &\in S^2 \times S^2 \\ \theta_{\mathbf{T}_i} &:= \frac{1}{\Delta t} (\mathbf{R}^{-1} \mathbf{v}_i - \mathbf{u}_i) \\ \phi_L &:= \max(\{||\theta_{\mathbf{T}_i}||_2 \mid |\mathbf{v}_i \in L\}) \\ \phi_R &:= \max(\{||\theta_{\mathbf{T}_i}||_2 \mid |\mathbf{v}_i \in R\}) \\ \omega_x &= K(\phi_R - \phi_L) \end{aligned}$$

Intensity-Based Image Processing

$$I''(x,y) := 255 - I'(x,y)$$
$$\mathbf{c} = \begin{bmatrix} c_x \\ c_y \end{bmatrix} = \frac{\sum_A \begin{bmatrix} x \\ y \end{bmatrix} \cdot I''(x,y)}{\sum_A I''(x,y)}$$
$$\begin{bmatrix} \omega_x \\ \omega_y \end{bmatrix} = -K \begin{bmatrix} c_x \\ c_y \end{bmatrix}$$

Simulation Results

- Found root mean square (RMS) distance between camera position and center line of lumen (% of lumen width)
 - Optical Flow Based Algorithm: 21%
 - Intensity Based Algorithm: 24%
- When light intensity increased to 400% of shown, RMS deviated by less than 5% of lumen width

Phantom Experiment

- Could not use optical flow due to lack of texture in GI tract of phantom
- Endoscope manually retracted starting at duodenum with image-based steering keeping lumen centered
- Compared against 10 gastroscopies performed by 5 med students with flexible endoscopy training

ciis

Experimental Results

 c_a = output of vision algorithm c_r = reference center found manually

$$e_v := ||c_r - c_a||_2$$

RMS of error = 42 mm or 10% of image

Conclusion

- RMS of position error for overall experiment was 16% of image width (66 mm)
- Compared to manual steering
 - Average RMS position error for ten experiments
 was 110 mm (standard deviation= 10 mm) or 27%
 of image width
 - 68% higher error than in robotically steered experiments

