

Robotic Endoscopic Tumor Ablation System

Elizabeth Cha

Mentors: Kevin Olds, Dr. Russell Taylor

Sponsor: Dr. Jeremy Richmon

Motivation

- There are approximately 25,000 new cases of throat cancer every year in the US, resulting in approximately 6,000 deaths per year
- Radiation and chemotherapy have many undesirable side effects, especially in a sensitive and critical area like the throat
- Surgical approaches are often used to treat throat cancer

Background

Tonsil

Epiglottis

Surgical Techniques

- Types of surgical techniques in throat surgery:
 - Through incisions in the patient's neck
 - Inside the airway using an endoscope and specialized surgical tools including a cutting laser

Pros and Cons of Intra-Airway

- Advantages of Intra-Airway
 - Less risk of infection
 - Less scarring
 - Smaller risk of complications (damaged vocal cord nerves, etc.)
 - Faster recovery time
- Disadvantages of Intra-Airway
 - Limited visibility
 - Limited working room

Current Intra-Airway Surgery at JHMI

- Minimum of 4 hands needed:
 - Laser and endoscope are separate instruments
 - Endoscope needs two hands to operate

Goal

- 3rd grabbing instrument is needed
- Laser is rigid and cannot bend around corners
- Scope does not remain stationary when hands removed and is difficult to control accurately
- Result: working environment is crowded and awkward and visibility is poor

Problem

- Current methods for throat tumor removal require multiple surgeons, risky/expensive surgeries with general anesthesia, and unnecessarily long hospital stays
- Other devices are not specialized, too expensive or don't have the functionality for a full system.

Goal

Design, build, and test a clinical quality prototype robotic throat tumor ablation system to aid in performing minimally invasive intra-airway surgery done potentially as an outpatient procedure under local or weak general anesthesia.

- Reduce number of hands needed
- Control all motion of endoscope
- Allow for use of one hand to control system leaving surgeon free to hold tool in other
- Have scope remain stationary with no hands

Solution

- Use a robotized endoscope with:
 - Single hand operation for laser/scope, leaving the other hand to use tissue manipulators
 - Built-in working channel for cutting laser
 - Precision movement
 - Laser and scope remain stationary when hands removed
 - Use pre-existing clinical endoscope and laser to minimize cost

Our Approach

- Design and build a 3 axis robotic assistance device
- Uses a laptop for surgeon to control system

Constraints and Design Issues

- Resistant to long term exposure to hospital grade cleaning agents
- Cannot contain any allergens or toxic materials
- Submersion proof
- Well grounded
- Should not have a lot of mass over the patient
- As few visible moving parts as possible
- Corrosion resistant seals
- All exposed metal parts must be stainless steel, aluminum, or plastic
- Robot must be able to resist bumps and minor abrasions

Prototype I

Hardware

- 3 servo brushed, coreless motors
- Integrated magnetic encoders
- Linear potentiometers for redundant sensing
- Galil Motion Controller (DMC-4030)
 - C++ Wrapper
 - Analog and Digital Inputs
 - Auto-tuning Control Loop

Software

Software

- Utilizes CISST libraries
- Controls each axis of motion separately
- Contains software safety features and limits
- **GUI**
 - alternative way to move robot
 - adjust speed and other variables
 - visualization/debug feature

GUI

Prototype 2

Deliverables

Minimum

Functioning system capable of performing mock operations with phantoms

Expected

- System capable of performing extensive cadaver experiments demonstrating functionality of system
- User interface able to control and adjust system

Maximum

- Design and construction of a new input device
- System able to pass clinical engineering standards

Testing Plan

- Clinical Engineering Standards (waterproof, grounded, chemical resistant, etc..)
- Phantom Evaluation
- Initial Cadaver Study
- Final Cadaver Study

Background

Approach

Dependencies

Dependency	Plan to Resolve	Resolve By	Affects				
Cadavers Required	Have Surgeons Order	Resolved	Expected				
Surgeon Feedback	Schedule Meeting	Resolved	Minimum				
New Space Mouse	Order new mouse	Resolved	Minimum				
New Translation Motor	Order new motor	Resolved	Maximum				
Mechanical Work	Have Kevin finish	February 16	Expected				
Funding	Submit budget proposal	Resolved	Maximum				
New Input Device	Find an alternative or build alternative	April 1	Maximum				
Electronics Equipment	Ask Dr. Taylor	March 9	Expected				
QT toolkit/RobotGUI task	Talk to students in Lab	March 1	Maximum				

Previous Work

Milestones	2009						2010													
ivillestolles	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	
Phase 1: Feasibility Prototype																				
Phase IIa: Clinical Prototype																				
Requirements and Planning																				
High Level Design																				
Choose Parts																				
CAD Drawings																				
Order Parts and Materials																\square (Ph	ase I		
Endoscope Adaptor																		ase Ila		
Z-Stage																	Phase IIb			
Theta-Stage																				
Electronics																				
Software and Control																				
Integration and Testing																				
Phase IIb: Enhancements																				
Phase IIc: Phantom Evaluation																				
Phase IIIa: Clinical Engineering																				
Phase IIIb: Cadaver Study																				
Phase IIIc: IRB Approval																				
Phase IIId: Further Evaluation																				
Phase IV: Clinical trials																				
Phase V: FDA Approval/ Commercialization																				

Timeline and Milestones

Milestones		February				Ma	rch				May				
Time Stories	04	11	18	25	04	11	18	25	01	08	15	22	29	06	13
Project Plan															
Project Plan Presentation															
Install Rotation Motor (B)															
Tune Motors/Control Loop													Plann	ing	\neg
Redundant Sensor Integration													Hardware Safety		
Backlash Compensation												_			
Galil Power Limits															e
Force Limits															
"Heartbeat" Program															
Software Safety Features															
GUI															
Design New Input Device				(
Build New Input Device															
Create Interface For New Input Device															
Phantom Test															
Initial Cadaver Trials															
Updates															
Final Cadaver Trials															
Project Final Report															
Project Final Presentation															

Management Plan

- 25 hours per week on project
- Reassess deliverables at each milestone
- Meeting Schedule
 - Daily meeting with Kevin Olds
 - Weekly meeting with Dr. Taylor
 - Monthly meeting with Dr. Richmon

Goal

Budget

Items	Budget Allocation
Scope	\$22,000
Scope interrogator	\$2,000
Hardware	\$12,000
Theta-stage	\$2,000
Z-stage	\$2,000
 Motor Controller 	\$2,000
Motors/Encoders	\$1,500
Misc. Shop Materials	\$500
 Computer/accessories 	\$1,000
Machinist Fees	\$1,000
Phantom Costs	\$500
Enhancements	\$2,900
Phantom Study	\$925
Clinical Engineering	\$2,875
Cadaver Study	\$11,875
Total	\$54,575

Background

References

- Reilink, R.; Stramigioli, S.; Misra, S.; , "Image-based flexible endoscope steering," Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on , vol., no., pp.2339-2344, 18-22 Oct. 2010
- Charles R. Allen, Corinne Boscand and Muriel Bories, "Visually guided robot control for examination of the throat by naso-endoscopy", Proc. SPIE 2056, 368 (1993); doi:10.1117/12.150214
- Rilk, M.; Kubus, D.; Wahl, F.M.; Eichhorn, K.W.G.; Wagner, I.; Bootz, F.; "Demonstration of a prototype for robot assisted Endoscopic Sinus Surgery," Robotics and Automation (ICRA), 2010 IEEE International Conference on, vol., no., pp.1090-1091, 3-7 May 2010
- Buckingham, R.O.; Graham, A.C.; , "Computer controlled redundant endoscopy," Systems, Man, and Cybernetics, 1996., IEEE International Conference on, vol.3, no., pp.1779-1783 vol.3, 14-17 Oct 1996
- Parmar, Amit, David G. Grant, and Peter Loizou. "Robotic Surgery in Ear Nose and Throat." OTO-RHINO-LARYNGOLOGY 267.4 (2009): 625-33. Print.
- Dario, Paolo. Endoscopic Robot. Scuola Superiore Di Studi Universitari E Di Perfezionamento S. Anna, assignee. Patent 2767705. 21 Oct. 1997. Print.

Questions?

