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Abstract

In this paper, we focus on the robustness and stability of
our algorithm to plot the position of an endoscopic cam-
era (during a colonoscopy procedure) on the correspond-
ing pre-operative CT scan of the patient. The colon has
few topological landmarks, in contrast to bronchoscopy im-
ages, where a number of registration algorithms have taken
advantage of features such as anatomical marks or bifur-
cations. Our method estimates the camera motion from the
optic-flow computed from the information contained in the
video stream. Optic-flow computation is notoriously sus-
ceptible to errors in estimating the motion field. Our method
relies on the following features to counter this, (1) we use a
small but reliable set of feature points (sparse optic-flow
field) to determine the spatio-temporal scale at which to
perform optic-flow computation in each frame of the se-
quence, (2) the chosen scales are used to compute a more
accurate dense optic flow field, which is used to compute
qualitative parameters relating to the main motion direc-
tion, and (3) the sparse optic-flow field and the main mo-
tion parameters are then combined to estimate the camera
parameters. A mathematical analysis of our algorithm is
presented to illustrate the stability of our method, as well as
comparison to existing motion estimation algorithms. We
present preliminary results of using this algorithm on both
a virtual colonoscopy image sequence, as well as a colon
phantom image sequence.

1. Introduction

Colorectal cancer is a leading cause of cancer and
cancer-related mortality in the United States[1]. The sur-
vival rate can be significantly improved through early can-

cer detection and treatment. Optical Colonoscopy(OC) is
a minimally invasive screening and cancer detection tool,
that involves guiding a long, flexible endoscope into the
colon, allowing visual inspection and removal of inflamed
tissue, abnormal growth (also known as a polyp), and ul-
cers. However, OC is an exploratory procedure and de-
pends on the physician’s skills and experience, and can
miss polyps[23]. A newer technology, Virtual Colonoscopy
(VC) [30, 21] is capable of providing interactive views of
the interior of the colon for surgery planning and diagno-
sis. VC has limitations: lesions less than 5mm cannot be
detected, and, currently, there is no means to track the con-
ventional colonoscopy images and the pre-segmented vir-
tual colonoscopy images. This is necessary for effective and
convenient use of VC images during a colonoscopy proce-
dure.

The past decade has seen a considerable body of work in
registering optical and virtual bronchoscopy images [20, 18,
31, 10, 29, 11, 28, 12]. However, this task exploits anatomi-
cal marks, bifurcations and other structural features, as well
as repeated 2D and 3D registrations to align the virtual and
optical images. Unlike the bronchi of the lungs, the colon
has no bifurcations or other anatomical features for naviga-
tion. As the goal of our work is to track the endoscopic cam-
era so as to be in the vicinity of landmarks such as polyps
or a particular fold, the requirements are somewhat more
relaxed, unlike the registration algorithms typically used in
bronchoscopy tracking to guide needle biopsy procedures.
Given these considerations, optic flow based schemes are a
reasonable approach in the absence of other visual cues.

Optic flow represents the distribution of apparent veloc-
ities of brightness patterns in an image[19], and is used to
estimate the projected motion of the relative displacement
between the camera and the objects. There are a large num-
ber of methods to compute optical flow, including differen-
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tial techniques[19, 27, 36, 7], region-based matching[4, 25],
and phase-based methods[13, 15]. Detailed reviews of op-
tic flow computation can be found in [5, 6, 14]. Optic flow
computation techniques have led to tracking algorithms,
generally referred to as egomotion determination. Bruss[8]
proposed a linear-square minimization scheme to search the
3D motion parameters that best approximate the measured
flow field. In order to be less sensitive to inaccuracies and
ambiguities in optic flow fields, Adiv[2, 3] proposed a de-
composition scheme to compute the motion parameters ac-
cording to an estimated residual. Nevertheless, these meth-
ods are still sensitive to the accuracy of the underlying flow
field. Matrix perturbation theory[33] can be used to illus-
trate the sensitivity of the estimation matrix used in com-
puting motion parameters.

A number of researchers have used motion parallax to
compute invariant properties of the flow field[22, 26], such
as the focus of expansion (FOE), in order to improve the ro-
bustness of the tracking algorithms. The focus of expansion
is defined as the projection of the camera’s translation axis
on the image plane. Detection of the focus of expansion
permits independent estimation of translation and rotation
parameters, and the approach taken in [17, 32, 34].

In this work, we focus on the stability and robustness
of our proposed algorithm for tracking optical and virtual
colonoscopy images. Fig. 1 illustrates the steps involved in
our method. The key to our approach is to be able to com-
pute an accurate flow field, given the limitations and dif-
ficulties associated with colonoscopy images. Specifically,
our method has the following 3 features that results in a sta-
ble tracking algorithm:

1. [Multi-Scale Approach:] We choose a small set of ro-
bust feature points (corner points) to compute a sparse
optic flow field; an iterative scheme and a scale selec-
tion metric is proposed to compute optimal spatial and
temporal scales for each image frame.

2. [Dense Flow Field and FOE Computation:] The
computed scales are used to determine the dense op-
tic flow field, which in turn is used to obtain the focus
of expansion using a subdivision based method; qual-
itative motion information relating to the main mo-
tion direction is extracted. We illustrate comparisons
of our approach to the direct approach to computing
motion parameters from the accurate sparse flow field.
We demonstrate mathematically and experimentally its
sensitivity to flow field errors.

3. [Determining Camera Motion Parameters:] The
qualitative features derived from the dense flow field
and the accurate sparse flow field (step 1) are used to
estimate the camera motion parameters. We illustrate
the robustness of our tracking algorithm on two exam-
ple datasets.

Figure 1. The colonoscopy tracking algorithm.

2. Methods
2.1. Optic-Flow Computation: A Multi-scale

Approach

Our tracking algorithm begins by identifying a relatively
small set of stable feature points and their corresponding
optical flow, resulting in a sparse optic flow field. Moreover,
the flow field is determined using a multi-scale approach.

Let (ux, uy) define the flow vector at an image pixel
(x, y) at time t. Then

L(x, y, t) = L(x+ ux, y + uy, t+ 1) (1)

where L(x, y, t) is the scale-space representation of the
original image I(x, y, t), σ, τ are the spatial and temporal
scale parameters, and

L(x, y, t) = g(x, y, t;σ2, τ2) ∗ I(x, y, t) (2)

g(x, y, t;σ2, τ2) =
e

„
−(x2+y2)

2σ2 − t2

2τ2

«
√

(2π)3σ4τ2
(3)

Anisotropic Gaussian is applied to account for the differen-
tial sampling rates across the spatial and temporal dimen-
sions. Unlike methods that consider spatial [24] or the tem-
poral scale [37] individually, our approach is targeted at de-
termining the optimal spatial and temporal scales for optic
flow computation.

In order to reduce the ambiguities in corresponding pairs,
corner points are chosen as feature candidates. Corner
points are detected by the Harris matrix[16] defined as

µ =
[

L2
x LxLy

LxLy L2
y

]
(4)

where

(Lx, Ly, Lt) = (∂x(L(x, y, t)), ∂y(L(x, y, t)), ∂t(L(x, y, t)))
(5)



We are interested in corresponding pairs that exhibit
maximum variance in the spatial domain and minimum dif-
ference along the temporal direction. We propose the fol-
lowing scale-space metric to achieve this,

Θ =

R R
W

G(x, y)|L(x, y, t)− L(x + ux, y + uy, t + 1)|2R R
W

G(x, y)
p
|det(µ)− α ∗ Trace2(µ)|+ β

(6)

where α and β are constants. The measurement is per-
formed within a window of size W to avoid the aperture
problem[19], and G(x, y) is its window function.

The numerator in Eq. 6 represents the similarity between
corresponding pairs, while the denominator measures how
distinct the selected features are in their local neighborhood.
The smaller the response of Θ, the better the match. We
use Eq. 6 as the basis for spatial and temporal scale selec-
tion. We argue that these characteristic spatial and temporal
scales should also make Θ a local minimum in scale space.
For implementation, the numerator can be converted into
the iterative Lucas-Kanade algorithm [27] (Taylor series ap-
proximation), while the denominator is related to the Harris
matrix, resulting in the following approximation to Eq. 6,

Θ ≈
R R

W
G(x, y)|Lxux + Lyuy + Lt|2R R

W
G(x, y)

p
|det(µ)− α ∗ Trace2(µ)|+ β

(7)

An image sequence from virtual colonoscopy was used
to examine the effectiveness of the scale selection metric.
Ground truth, consisting of the exact motion field (Eq. 9)
and depth values were respectively calculated from the
known motion of the virtual camera and the Z-buffer. Scale
selection results are illustrated in Fig. 2 and Table 1. Fig. 2d
shows a response curve plotted as a function of the two spa-
tial and temporal scale parameters. It can be seen that the
response curve first decreases to a local minimum, and then
gradually increases. There are also three navigation images
overlaid with ground truth flow vectors (red) and the esti-
mated flow vectors(blue). The small green cubes indicate
the positions of the chosen feature points. Fig. 2(a), corre-
sponding to point A in 2(d) shows the results with fine spa-
tial and temporal scales, where large vectors deviate from
the ground truth because the scales are not large enough
to eliminate the noise or large intensity variance; in 2(c),
which corresponds to point C in 2(d), small vectors diverge
because the chosen scales are too coarse and small areas
with varying motion are merged. Spatio-temporal scales at
the local minima are a means to balance between these two
extremes, and as seen in 2b (point B in 2(d)), generate flow
vectors close to the groundtruth.

Table. 1 shows numerical results of the errors between
the groundtruth and estimated flow vectors for various com-
binations of spatial and temporal scales. These scale values
correspond to the points on the response curve in Fig. 2(d).
40 feature pairs were selected in this example. Their av-
erage, minimum, and maximum differences, in magnitude

(σ, τ ) Error Error Measurements
Type Average Minimum Maxium

(0.5, 0.25) εmagn 0.1033 0.0011 0.5521
εdir 4.6374 0.1586 25.32

(0.71, 0.35) εmagn 0.081 0.0002 0.5792
εdir 3.6221 0.04483 23.19

(1.0, 0.5) εmagn 0.0384 0.0004 0.1491
εdir 2.3875 0.3323 6.7625

(1.41, 0.71) εmagn 0.0346 0.0022 0.1222
εdir 1.449 0.0131 7.0472

(2.0, 1.0) εmagn 0.0584 0.0042 0.1487
εdir 1.4337 0.0104 8.4133

(2.82, 1.41) εmagn 0.1266 0.062 0.1979
εdir 1.598 0.0345 7.8617

(4.0, 2.0) εmagn 0.1947 0.1095 0.2939
εdir 5.4366 0.1977 23.6694

(5.66, 2.83) εmagn 0.272 0.1699 0.5248
εdir 8.0157 0.013 31.497

(8.0, 4.0) εmagn 0.385 0.266 0.682
εdir 15.48 0.635 90.08

(11.3, 5.66) εmagn 0.7954 0.292 5.075
εdir 33.55 0.822 138.4

Table 1. Comparison between the groundtruth and the estimated
optic flow vectors, in terms of magnitude and direction. Error
measurements are in units of relative magnitude and degrees(see
Eqn. 8).

and direction between the estimated optical flow and ground
truth, were calculated. In this example, the scale pair, (1.41,
0.71) or (2.0, 1.0) are the best choices and are around the
local minima (Fig. 2d).

εmagnitude =
‖u− v‖
‖v‖

εdirection =
|u � v|
‖u‖‖v‖

(8)

where u and v are estimated and groundtruth flow vectors.

2.2. Dense Flow Field and FOE Computation:

Given the characteristic spatial and temporal scales, they
are used to compute a dense optic flow field, which is
more accurate than if a single scale was chosen through-
out the image sequence. We use Horn’s method [19] on
the smoothed image sequence, using the optimal spatial and
temporal smoothing parameters. Using the full flow field of
the image also leads to a more robust algorithm to detect the
focus of expansion. We use a subdivision based method[32]
to detect the focus of expansion, which we describe next,
preceded by a mathematical basis for our approach.

Fig. 3 shows the coordinate system of a moving cam-
era. T = (Tx, Ty, Tz) and R = (ωx, ωy, ωz) represent the



Figure 2. The relationship between spatio-temporal scale and the scale metric. Groundtruth flow vectors are in red and estimated flow
vectors are in blue. Green cubes represent the selected feature point positions, (a) Results with relatively fine spatial and temporal scales,
(b) Results with optimal spatial and temporal scales, (c) Result with relatively coarse scales, (d) The response curve between spatio-
temporal scales and the scale metric; the scale values at points A, B and C correspond to images (a), (b), and (c) respectively.

Figure 3. The motion coordinate system, where the camera is put
at point O and its optical axis is along the Z-axis.

translation and rotation vectors along the spatial dimensions
Let the instantaneous coordinates of an object point P in
camera coordinates be (X,Y, Z) and its projection point p
in the image plane be (x, y) Geometrically, its optical flow
is [19, 26]

ux =
−Txf + Tzx

Z
+ ωx

xy

f
− ωy(f +

x2

f
) + ωzy

uy =
−Tyf + Tzy

Z
+ ωx(f +

y2

f
)− ωy

xy

f
− ωzx

(9)

The motion parameters can be directly estimated from these
equations, and the approach taken by Bruss and Horn[8],
approximating the motion parameters by the estimated optic
flow. This leads to the following linear system

Ax = b (10)

where A is a 6 × 6 system shown below, formed from
integrating individual equations formed from each chosen
feature candidate(using Eq. 9), x is the unknowns, T =
(Tx, Ty, Tz),R = (ωx, ωy, ωz), and b are constants.

However, there are errors in the optical flow estimation
that makes it impractical to directly solve this linear sys-

tem. In Appendix A, perturbation theory is used to show
the numerical problems and the resulting instabilities in us-
ing this approach. Fig. 4 shows the relationship between the
absolute translation error of the first 150 images of a virtual
colonoscopy image sequence. Notice the large translation
errors along X and Y at the points marked A, B; these points
represent numerical instabilities in the characteristics of the
linear system and the chosen feature points. Refer to Ap-
pendix A for details.

Thus, it is important to enforce some constraints on the
motion parameters to reduce the sensitivity of estimation
procedure. Note that we can split the camera’s translation
and rotation, rewriting Eq. 9 as

ux = uT
x + uR

x

uy = uT
y + uR

y

(11)

where

uT
x =

Tz

Z
(x− fTx

Tz
)

uT
y =

Tz

Z
(y − fTy

Tz
)

uR
x = ωx

xy

f
− ωy(f +

x2

f
) + ωzy

uR
y = ωx(f +

y2

f
) − ωy

xy

f
− ωzx

(12)

From Eq. 12, we note that the translation components of
all optical flow vectors, intersect at the focus of expansion
at p0 = ( fTx

Tz
,

fTy

Tz
). This is depicted by the red vectors

in Fig. 3. We can thus compute the two translation ratios



Figure 4. The relationship between absolute translation errors and
the sensitivity measurement ζ = µ

|λ1| of the estimation system.
(a) The absolute estimated translation errors of 150 frames of a
CT colonoscopy sequence. (b) Corresponding sensitivity measure-
ment .

Tx

Tz
,

Ty

Tz
), given the focal length. We use this to estimate the

rotation and translation parameters independently.
Longuet-Higgins [26] showed in theory that the vector

joining two object points having different depth values and
projecting on to the same pixel will point toward the focus
of expansion(FOE. We use this property and a subdivision
based method similar to [32], to detect the focus of expan-
sion.

Fig. 5 shows the process of determining focus of expan-
sion. The image plane is subdivided into rectangular re-
gions (region lattice indicated by the dark dots in 5b and c)
and flow vector differences between the region center and
its neighbors are tabulated. A system of linear equations
(the dense optic flow field is used) is formed, as given by
Eq. 13. ∑

W

[
∆u2

x ∆ux∆uy

∆ux∆uy ∆u2
y

]
(13)

where (∆ux,∆uy) = (ux1−ux2, uy1−uy2) represents the
flow vector difference between the two image points. Eigen
ratio of this matrix δ = ‖λsmall/λlarge‖ is computed, and
thresholded. A line fitting algorithm is run on each region

and the intersection of these lines completes the FOE calcu-
lation.

2.3. Determining Camera Motion Parameters

As stated earlier, the translation and rotation components
of the camera are determined independently. Unlike most
subdivision methods [32, 17, 34] that use the dense flow
field, we use only the sparse flow field vectors, as they
represent stable feature points (corner points). This further
contributes to the accuracy of camera parameter estimation.
There are two steps:
Rotation Parameters. All flow vectors are transformed
into polar coordinates with the focus of expansion at the
origin. This permits the translation component to be elimi-
nated as follows:

u � e⊥ = (uT + uR) � e⊥ = uR � e⊥ (14)

where e⊥ is perpendicular to translation component (that
joins the feature point to the focus of expansion).
Translation Parameters. The rotation parameters are next
substituted into Eq. 12 to remove the rotation components
from the optical flow vector for each selected feature. The
following formulation is obtained,

Z/Tz = ‖d‖/‖uT ‖ (15)

where Z is obtained from the Z-Buffer. Thus, the removal
of the rotation parameters results in a 3×3 linear system, in
contrast to the 6×6 system used in Eq. 9. To reduce the sen-
sitivity to depth discontinuities, the mean depth value within
a local neighborhood of the feature point is used. Similarly,
a sequence of Tzs corresponding to different feature points
is computed. The median of these is chosen and outliers
removed based on a threshold. The mean of the remaining
values is the Tz estimate. Based on the position of the focus
of expansion, Tx and Ty are then determined.

Fig. 6 compares our method to that of Bruss and Horn[8]
on a 750 frame virtual colonoscopy (CT) image sequence
consisting. As reviewed in [35], Bruss and Horn’s method
was considered to be one of the more superior methods, and
a typical representative linear-square estimation method.
It can be seen that the first 127 frames produce very lit-
tle error; at this point, error starts significantly increas-
ing (magenta curve) to about 80mm at the end of the se-
quence, while the error (blue curve) using our method re-
mains around 10mm.

Fig. 7 shows a second experiment on a 652 frame colon
phantom image sequence. A bent tube with artificial polyps
glued to its interior surface was imaged using both CT and
an endoscope. Fig. 7(a) shows the camera being tracked at
frame 652, while in Fig. 7(b), Bruss and Horn’s method is
shown at the 10th frame. It can be seen that the camera has
moved out of the colon phantom (external view on the right



Figure 5. Determining focus of expansion: (a) Dense optical flow field; (b) Subdivision lattice, indicated by the dark dots; the prinicipal
orientation within each region is indicated by the red lines, (c) focus of expansion (intersection of the green lines) is determined by
least-squares fitting.

Figure 6. Comparison to Bruss and Horn’s method on a 750 frame
virtual colonoscopy sequence. Absolute error along Z axis. Our
method results in an accumulated error of about 10mm, while
Horn’s method increases to 80mm.

shows the camera at the boundary of the colon phantom). In
this sequence, our proposed algorithm was able to track the
colon phantom images between the first and second polyp
(about 700 frames). Note the second polyp displayed for
the optical and the virtual images, as marked by red arrows
in Fig. 7(a). As ground truth is not available for real data,
we use polyps as landmarks to evaluate our method.

3. Conclusions

In this work, we have attempted to justify the robustness
and stability of our proposed tracking algorithm. Our inter-
est focuses on tracking optical colonoscopy images, which
are mostly devoid of anatomical features that can otherwise
be exploited by traditional registration algorithms. Another
key distinction is the less stringent requirements on accu-
racy; generally, the tracking algorithm needs to place the
virtual images in the vicinity of the endoscopic camera, as
polyps and other abnormal tissue can easily be seen during
the procedure. The VC images provide a kind of navigation
‘roadmap’ aid to the physician during the procedure.

Our method demonstrated the importance of both fea-
ture selection as well as scale selection in computing optic

flow fields; a scale selection metric and an iterative algo-
rithm are proposed to compute the optimal scale. Use of
an optimal spatio-temporal scale provides a robust scheme
to determining the FOE, which helps us to independently
compute the rotation and translation parameters of the cam-
era. Direct methods of computing these parameters were
shown using perturbation theory to be numerically unsta-
ble, and validated by experiments on both VC nad OC im-
age sequences. Finally, we have compared our approach to
Bruss and Horn’s algorithm using a VC and an OC image
sequence.

Our next steps include more detailed testing of our algo-
rithm on real colonoscopy data 1. Additionally, the accuracy
of our algorithm could be improved by reducing initializa-
tion errors. We also need to look at reinitialization, to re-
cover from tracking failures (for instance, a long sequence
of blurry frames) before this method can see application in
clinical practice.

Appendix A

Here we show the difficulties in directly trying to solve
the system described in Eqn. 10. The errors in optic flow
can be modeled as

Ax = b+ δ (16)

where δ represents a perturbation vector. In terms of matrix
perturbation theory[33, 9], the bound of the relative error is

1

n
κ(A)

‖b‖
‖A‖‖x‖ εbµ ≤ ‖x− x‖

‖x‖ ≤
√

nκ(A)
‖b‖

‖A‖‖x‖ εb (17)

where κ(A) is the condition number and εb = ‖δ‖
‖b‖ . As-

sume A−1 = (rT
1 . . . r

T
n )T and ψi is the angle between ri

and δ, then µ = maxi{‖ri‖|cosψi|}/maxk‖rk‖. x is the
estimated value of x.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A, the

1http://www.virtualcolonoscopy.nci.nih.gov



Figure 7. Comparison between our method and Bruss and Horn’s method on phantom data. (a) Tracking results at frame 652, showing the
camera successfully reaching the second artificial polyp, (b) Bruss and Horn’s algorithm results at frame 10, where the camera is out of the
virtual phantom. Phantom images are the top images and the virtual CT images are the lower images.

lower bound of Eq. 17 can be converted into

1
n
κ(A)

‖b‖
‖A‖‖x‖

εbµ =
1
n

|λn|
|λ1|

‖b‖
|λn|‖x‖

εbµ

=
1
n

µ

|λ1|
‖b‖
‖x‖

εb (18)

as κ(A) = |λn|/|λ1| and ‖A‖ = |λn|[33]. ‖b‖
‖x‖ can be

treated as a constant since x and b are the actual input and
output signals, and do not affect the estimation process. εb
relies on the measured signal and the output signal. There-
fore, ζ = µ

|λ1| is solely related to the linear system. If it is
stable, the estimated error will be small even if the perturba-
tion ratio εb is high. Fig. 4 shows the relationship between
the absolute translation error of the first 150 images of a
virtual colonoscopy image sequence and ζ. Large transla-
tion errors are seen in X and Z on the frames close to the
point marked A because λ1 ≈ 3 × 10−4, which increases
the lower bound, although εb = 0.31 is small. At the point
B, a small error along Y-axis is due to the perturbation er-
ror, εb = 0.85 and ζ = 89. Although it might be possible
to model the optical flow estimation error it is considerably
harder to model ζ as it is dependent on the distribution of
the feature points as well as the relationship between the
perturbation vector and the estimation matrix. In addition,
the perturbation effect is difficult to predict, as seen in point
C, where the X translation error initially increases, then de-
creases near B.
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