Paper Presentation

Robotically Assisted Cochlear Imaging

Xingchi He

04.12.2011

Background

Our Approach

Imaging system: OCT \rightarrow Micro-Borescope

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

JHU CONFIDENTIAL: FOR INTERNAL USE ONLY

Paper Selection

- H.W. Pau, E. Lankenau, T. Just, D. Behrend, and G. Hüttmann, "Optical coherence tomography as an orientation guide in cochlear implant surgery?," Acta oto-laryngologica, vol. 127, Sep. 2007, pp. 907-13.
- Klenzner, T., Ngan, C. C., Knapp, F. B., Knoop, H., Kromeier, J., Aschendorff, A., et al. (2009). New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. *European Archives of Oto-Rhino-Laryngology*, 266(7), 955-960.
 Springer. doi: 10.1007/s00405-008-0825-3.

 H.W. Pau, E. Lankenau, T. Just, D. Behrend, and G. Hüttmann, "Optical coherence tomography as an orientation guide in cochlear implant surgery?," Acta oto-laryngologica, vol. 127, Sep. 2007, pp. 907-13..

Material & Methods

Optical Coherence Tomography

Figure 1. Schema of optical coherence tomography (OCT) (explanations are given in the text).

Pau et al. 2007

Different Applications of OCT

Pau et al. 2007

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

a

b

Material & Methods

Preparation of temporal bones

- Two temporal bone were grinded and cut for revealing the cochlear anatomy
- Third temporal bone: preparations were performed as in real cochlear implant surgery

Figure 3. Temporal bone preparation (formalin-fixed temporal bone specimen, P1) with the cochlear endosteum exposed to the extent of approximately 1.5×1.5 mm (arrow). Slightly anterior to this 'fenestration' a cross-section through the temporal bone reveals the cochlear anatomy.

Pau et al. 2007

Results: OCT Scan

Figure 4. OCT scan representing a vertical cross-section through the lateral part of the cochlea in the formalin-fixed temporal bone (P1). The membranous sheath of the cochlea can be seen between two portions of bone bordering the 'fenestration' (left and right). The lateral borders of the scalae (SV =scala vestibuli, ST =scala tympani) can be detected with the 'ridge' of the basilar membrane (BM) in between (arrow). Pau *et al.* 2007

- SV: scala vestibuli
- ST: scala tympani
- BM: basilar membrane

Results: OCT Scan

• Comparison of the OCT scan and the underlying anatomical structures

Results: OCT Scan

• The third fresh temporal bone

Pau et al. 2007

Discussion

• In the cochlear implant surgery ...

Pau et al. 2007

 Klenzner, T., Ngan, C. C., Knapp, F. B., Knoop, H., Kromeier, J., Aschendorff, A., et al. (2009). New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. *European Archives of Oto-Rhino-Laryngology*, 266(7), 955-960.
Springer. doi: 10.1007/s00405-008-0825-3.

Material & Methods I

Klenzner et al. 2009

Material & Methods II

Results I

- Fiducial registration error: 0.3 mm
- Target registration error: 0.25 mm
- Desired target registration error <0.5 mm

	Fiducial registration error (FRE, in mm)	Target registration error (TRE, in mm)
1	0.42	0.30
2	0.19	0.13
3	0.51	0.37
4	0.24	0.17
Mean	0.3	0.25

Klenzner et al. 2009

Results II

- Endoscope advanced continously
- No collision or interference •
- No major aberration detected between the endoscopic view and ٠ the model of virtual endoscopy of the 3D dataset

Klenzner et al. 2009 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Future Work

- better CT imaging to reduce the registration error
- CO2-laser to replace the drill to avoid occurring forces •
- better robot mechanism •
- noninvasive registration method ٠

Klenzner et al. 2009 NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

NSF Engineering Research Center for Computer Integrated SurkiehShernetral/T2009ogy

Questions?

