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Abstract— As robotic systems for complex applications such
as surgery evolve, multiple and possibly distributed computing
engines are becoming common. This creates a real need for
an integrated framework allowing multiple elements of such
robotic systems to be developed independently on a framework
supporting common functions such as communication. Develop-
ment of such frameworks is an active area of research, and the
Surgical Assistant Workstation (SAW) is our modular software
framework that provides integrated support for robotic devices
and imaging sensors, as well as analysis, computation and
visualization tools. Here we present an overview of inter-process
communication (IPC) mechanisms in the SAW, including their
performance qualification for teleoperation, and the design of a
teleoperated application using these interfaces. Implementations
and simple experiments using multiple hardware platforms
(Sensable Omni, Novint Falcon devices, and the da Vinci
surgical system) showing the modularity of our implementation
are also presented.

I. INTRODUCTION

A number of frameworks and packages have been pro-
posed or developed to support the efficient development of
distributed robotic surgical systems. Several reviews of such
frameworks and packages have already been published [1],
[2], [3], [4], [5] and there is a web-site dedicated to cata-
loguing and reviewing these systems as well as standardizing
a reference architecture for robotics [6]. Several commonly
used frameworks for robotics research are summarized below
and compared to our Surgical Assistant Workstation (SAW).
While many of these frameworks adopt a component-based
architecture for software reusability, their overall distinct
designs reflect the desire to efficiently support a particular
project or environment.
Player: Player [7] is a popular set of tools for robotics
research including a range of robotic device drivers. Concep-
tually, it is a hardware abstraction layer for robotic devices
that also includes data communication mechanisms among
drivers and control programs. Communication interfaces are
based on a TCP socket-based client/server architecture.
OROCOS: The Open RObot COntrol Software (OROCOS)
[8] includes real-time C++ libraries for advanced machine-
tool and robot control. Orocos components communicate
with each other using interfaces which consist of properties,
events, methods, commands and data flow ports and this
communication relies on the ACE ORB (TAO), a popular
open-source CORBA implementation.
Orca: The Orca project [9], [10] aims to provide building-
blocks (components) that can be combined to build arbitrarily
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complex non-real-time robotic systems. It uses the Internet
Communication Engine (ICE) [11] network middleware.
SAW: The Surgical Assistant Workstation (SAW) is a soft-
ware development framework that enables rapid prototyping
of new applications for robot-assisted surgery [12], [13].
SAW consists of a component-based framework and a set
of implemented components that provide interfaces to many
of the hardware and software modules commonly used
for robot-assisted surgery. Hardware interface components
support common robotic devices, imagers, and other sensors,
including a “wrapper” for the research interface [14] to
the da Vinci surgical robot (enabled upon conclusion of a
collaborative agreement with the manufacturer). Software
components provide functionality such as video processing,
3D user interfaces, and robot motion control. The SAW
framework is based on the cisst libraries [15] (see Fig. 1),
which include a network layer built on top of ICE.

The above frameworks share a component-based design
philosophy, although they use different networking solutions.
The SAW inter-process communication (IPC) uses ICE, but
unlike Orca, the design is not dependent on ICE. It is
possible to substitute another middleware package, even a
native socket-based implementation, if needed. All Orca
components run as separate processes and communicate only
via ICE, whereas SAW provides flexiblity for implementation
such that tasks may communicate either with inter-thread
communication (ITC)–tasks running within a single process–
or inter-process communication (IPC)–with tasks being dis-
tributed across networks. ITC is performed using a lock-
free data exchange mechanism. The programming interfaces
(API) are identical in both cases.

Both Orocos and SAW use an Interface Description Lan-
guage (CORBA IDL in Orocos and ICE Slice in SAW) and
allow components to work across networks transparently.
Orocos does not yet fully support its component interfaces
(i.e., the event interface is not available) and permits only
primitive C++ types and std::vector<double> to be
used across networks. SAW supports a complete set of com-
ponent interface objects: four command types and two event
types. Moreover, all data types provided by the underlying
cisst libraries can be used across networks. Orocos and
SAW both support real-time programming; for Orocos, this
is evident in its reliance on a real-time Linux operating
system. SAW is truly platform independent, and includes an
operating system abstraction library that supports Windows,
Linux, and MacOS X as well as real-time Linux variants.
This is important for robot-assisted surgery applications (the
main application domain for SAW) because there often is



Fig. 1: SAW Components

(a) Single process (b) Multiple proceeses

Fig. 2: The concept of the Proxy Pattern

a constraint to use a non-real-time operating system, such
as Windows, to enable integration of devices. The SAW
network layer enables real-time and non-real-time systems
to co-exist within a single distributed application.

The following sections describe the details of the network
layer and IPC module.

A. Design

1) Proxy Pattern: When two objects–Object A and Object
B–are locally connected to each other (i.e., running within
a single process) as in Fig. 2a, the basic concept of the
Proxy Pattern is to replace the local connection between
them by a conceptual local connection over a network. Two
proxies–the Object A Proxy and the Object B Proxy–are set
up in both processes and locally connect to the corresponding
original object in the same process, as in Fig. 2b. Note that
a proxy object is always local to its peer original object and
the original local connection remains unchanged from the
original objects’ point of view.

(a) Single process (b) Multiple processes

Fig. 3: The Proxy Pattern in the cisstMultiTask library

TABLE I: List of Proxies in the cisstMultiTask Library

Original Class Proxy Class

(Base classes for networking)
mtsProxyBaseCommon
mtsProxyBaseServer
mtsProxyBaseClient

mtsTaskManager
mtsTaskManagerProxy
mtsTaskManagerProxyServer
mtsTaskManagerProxyClient

mtsDevice mtsDeviceProxy

mtsDeviceInterface
mtsDeviceInterfaceProxy
mtsDeviceInterfaceProxyServer
mtsDeviceInterfaceProxyClient

mtsCommandVoid mtsCommandVoidProxy
mtsCommandWrite mtsCommandWriteProxy
mtsCommandRead mtsCommandReadProxy
mtsCommandQualifiedRead mtsCommandQualifiedReadProxy

mtsFunctionVoid mtsFunctionVoidProxy
mtsFunctionWrite mtsFunctionWriteProxy
mtsFunctionRead mtsFunctionReadProxy
mtsFunctionQualifiedRead mtsFunctionQualifiedReadProxy

mtsMulticastCommandWrite mtsMulticastCommandWriteProxy

The cisstMultiTask library defines a task or a device
as a basic component. Tasks include their own execution
thread, whereas devices do not; for convenience we shall
henceforth use the term task to refer to either. Each task
can have any number of provided interfaces and required
interfaces, as in Fig. 3a. Since actual data communication
between tasks occurs through interfaces, it is necessary
to split this connection using task proxies and two types
of interface proxies–provided interface proxy and required
interface proxy, as shown in Fig. 3b.

Each interface consists of four types of commands (void,
write, read, and qualified read) and two types of events (void
and write). In the multi-threaded case, all commands and
events are non-blocking. A client task submits void and write
commands to a server task’s queue; these commands are later
dequeued and executed by the server task. The client task
does not wait for a response from the server task. As the
names imply, void commands take no parameters and write
commands take one parameter (the data to be “written”).
Void and write events are similar, except that they originate
in the server task and are queued for execution by the client
task. Read commands take one parameter and are used by the
client task to read buffered data from the server task. Each
task contains a circular buffer (called the State Table) that
provides a thread-safe and lock-free mechanism for client
tasks to read data. The qualified read command is concep-
tually like the read command except that it accepts two
parameters; the second parameter allows the client to pass
additional information (the qualifier). This latter command
is not automatically thread-safe, so programmers must be
careful to use the qualifier parameter in a thread-safe manner.
For example, it is acceptable to use the qualifier to specify
reading of a particular array element.

Thus, the application of the Proxy Pattern to the cisstMulti-
Task library requires proxy objects for all of these objects, as
shown in Table I. These proxy objects are completely hidden
from an application layer; they are dynamically created
and managed internally. We defined three base classes to



encapsulate all the implementation details for networking and
make adding a new proxy type simple and systematic. With
these classes, we could not only significantly increase code
reusability, but also manage proxy objects in a more consis-
tent manner. Furthermore, this design allows the library to
be independent from a specific network middleware.

2) Networking Middleware: There are many network-
ing middleware packages currently available such as Data
Distribution Service (DDS), CORBA, SOAP, Spread, and
ICE. Because the network module introduces additional
processing for data exchange between tasks, it naturally
affects the overall performance of a system. With our own
review of these packages and from previous studies on a
robotics system with middleware [16], [10], [1], [17], [18],
we concluded that ICE best satisfied our design requirements
for the following reasons:

Multi-language and cross-platform support: ICE sup-
ports C++, Java, Python, etc. Like cisst, it can also run under
Windows, Linux, and MacOS X.

Interface Description Language (IDL): ICE provides
the Specification Language for ICE (SLICE) to define an
interface and a data structure for a proxy in an easy,
flexible, and extensible way. Since component interfaces and
corresponding data structures are key aspects for software
reusability [19], SLICE can be a useful tool for designing
the network layer.

High network performance: From several reports from
ZeroC, ICE is known to perform efficiently in terms of
latency and throughput. We performed testing to confirm this,
as described in the following sections.

Proxy Pattern: The basic concept of ICE is the Proxy
Pattern. Because we adopted it as well in the design of the
network layer, the overall structure and implementation of
the module can be more consistent and more simplified.

3) Code-level Changes: Our proxy-based IPC module
design described above satisfies the requirement for minimal
code-level changes because all proxy-related processing is
encapsulated inside the cisstMultiTask library. To illustrate,
we consider a case where two tasks are running in the
same process: one is a serverTask that offers a pro-
vided interface named providedInterfaceName and
the other is a clientTask with a required interface named
requiredInterfaceName. The library includes a Task
Manager class (a Singleton object). Applications register
tasks with the Task Manager and then use it to start/stop
tasks and establish connections between their interfaces. In
this case, the core implementation at the code-level would
be the following:

taskManager = mtsTaskManager::GetInstance();
taskManager->AddTask(serverTask);
taskManager->AddTask(clientTask);
taskManager->Connect(

"clientTask", "requiredInterfaceName",
"serverTask", "providedInterfaceName");

The conversion from a multi-threaded (single process)
implementation to a networked (multiple process) implemen-
tation requires only minor changes to the setup and use of the

Task Manager, which now consists of a Global Task Manager
(GTM) that manages the local (proxy) Task Managers in
each process. The conversion procedure to distribute the tasks
consists of three simple steps:

1) Set up the Global Task Manager (GTM): The
GTM maintains a list of tasks and their access information.
Conceptually, this is similar to the CORBA naming service.

taskManager->SetTaskManagerType(
mtsTaskManager::TASK_MANAGER_SERVER);

2) Register Server Task: Set up the local task manager
and add the server task. Internally, proxy objects are created
dynamically and the task is registered to the GTM.

taskManager->SetTaskManagerType(
mtsTaskManager::TASK_MANAGER_CLIENT);

taskManager->AddTask(serverTask); // as before

3) Register Client Task and Connect: Set up the local
task manager, add the client task, and connect to the server
task. The client task is internally registered to the GTM
and the connection between the two tasks is automatically
established across the network.

taskManager->SetTaskManagerType(
mtsTaskManager::TASK_MANAGER_CLIENT);

taskManager->AddTask(clientTask); // as before
taskManager->Connect( // as before

"clientTask", "requiredInterfaceName",
"serverTask", "providedInterfaceName");

From our experience converting several projects from an
ITC-based application to an IPC-based distributed applica-
tion, this conversion process is simple and clear.

B. Networking Layer Performance

The conversion of an ITC-based application into an IPC-
based one requires additional processing such as networking
overhead, serialization, and deserialization. This naturally
leads to lower overall system performance. To quantify the
additional latency, we configured a test-bed and created a
performance benchmark application. The specifications of
the computers used are:

∙ Win1: Windows XP, Microsoft Visual Studio 2008,
Core2 Duo 3.16GHz, 4G RAM, 1 Gbps Ethernet
(wired)

∙ Win2: Windows Vista, Microsoft Visual Studio 2008,
Core2 Duo 2.5GHz, 4G RAM, 54 Mbps wireless

∙ Linux: Ubuntu 8.0.4, GCC, Pentium IV 3.2 GHz, 1G
RAM, 1 Gbps Ethernet (wired)

For IPC-based performance tests, we used the campus
wired and wireless networks at Johns Hopkins University.
The benchmark application defines a client and server task
and uses a qualified read command with arguments of
mtsDouble type. It obtains the local timing information
from the client task, carries it to and from the server task,
and calculates the elapsed time (i.e., the execution time of the
qualified read command). To investigate how much latency
is introduced, we tested four different configurations:

∙ Local 1P: two threads in a single process, single
machine, no networking.



Fig. 4: Networking Overhead: Average Latency

∙ Local 2P: two threads in two processes, single machine,
local networking (loop-back).

∙ Network 1H: two threads in two processes, two ma-
chines, one-hop networking with wired Ethernet.

∙ Network MH: two threads in two processes, two ma-
chines, multi-hop networking between wired Ethernet
and wireless network.

The Local configurations were tested on Win1 and Linux,
and the Network configurations were tested between Win1
and Win2 (reported as “Windows”) and between Win2 and
Linux (reported as “Linux”). The qualified read command
was executed 10,000 times per test and each test was repeated
5 times.

The results are shown in Fig. 4. As expected, the single-
process case (Local 1P) has the lowest latency (less than 10
microseconds). The two process, single machine, case (Local
2P) indicates that the performance penalty due to the ICE
middleware is on the order of a few hundred microseconds;
this includes the overhead for serialization, deserialization,
and dynamic object creation. The Network 1H case shows
that the wired Ethernet connection adds about 100-200
microseconds; the total latency of 300-400 microseconds is
still acceptable even for fast control loops (on the order of
1 kHz). Finally, the Network MH scenario shows that the
“worst case” latency (at least in our limited geographical
domain) is a few milliseconds, which is still acceptable for
higher-level control tasks, such as teleoperation.

II. TELEOPERATION TESTBEDS

We prototyped teleoperation applications using three sep-
arate devices. The Sensable Phantom Omni (Fig. 5a) is a
haptic device capable of six degrees of freedom (DOF)
positional sensing and 3-DOF force feedback. It supports
an IEEE-1394a interface and is compatible with Sensable’s
OpenHaptics toolkit. SAW interfaces to communicate with
the OpenHaptics Toolkit layer have been developed, pro-
viding the user the ability to read positions, velocities, etc.
and send positions without direct interaction with Open-
Haptics. The Novint Falcon (Fig. 5b) has 3-DOF position
sensing and force feedback and was designed as a gaming
controller capable of providing more realistic feedback. It
also supports an IEEE-1394a interface and the manufacturer
provides a low-level interface library. The Falcon employs
a developer’s kit similar to Sensable’s OpenHaptics, for
which SAW interfaces have been created. The da Vinci S
Surgical System (Intuitive Surgical, Inc.) is a teleoperated

robotic system for minimally invasive surgery. It consists of
three components. The surgeon console contains a stereo
viewer, configuration controls, and the master handles. A
patient side manipulator cart may hold up to four slave
surgical instrument manipulators, including one dedicated
for holding an endoscopic camera, and a touch screen. A
vision cart contains the supporting electronics for the stereo
video endoscope used for visualization. It includes a network
interface (the research API [14]), enabled only on certain
systems by the manufacturer, that streams the system state
over an Ethernet connection allowing da Vinci masters to
be used for teleoperation of other devices. A set of SAW
interfaces is used to interact with this read-only API.

A. Teleoperation methods
Fig. 6 outlines the basic teleoperation information flow.

Cartesian displacements of one device in this master/slave
setup are used to command the force-feedback on the other
device using a simple teleoperation control law. The position
offset, scaling, and force-feedback gains of each device are
individually configurable. In addition to the position, the
devices also communicate their button state allowing discon-
nection of teleoperation for manual reconfiguration (clutch-
ing) of local offsets. A CollaborativeControlForce task
connects and shares the current state (position, button states,
desired forces) between the devices.

As a demonstration of our modular implementation, we
use a simple control law. For the haptic devices, given Carte-
sian positions pm, ps, dm, ds, offsets om, os, displacements
em, es, gains km, ks, scale sc, and commanded forces fm, fs
for the master and the slave respectively, we obtain:

dm = pm + om (1)
ds = ps + os (2)

em = dm − sc ∗ ds (3)
es = ds − (−sc) ∗ dm (4)

fm = max(km ∗ em, limm) (5)
fs = max(ks ∗ es, lims) (6)

where limm, lims limit the maximum magnitude of the
master and slave forces to be displayed, respectively. In the
demonstrations below, we use constant gains.

To limit maximum displayed force, this implementation
includes a ratchet effect, allowing the devices to be indepen-
dently reconfigured if the applied force reaches the maximum
force limits. The offsets are recomputed, and teleoperation
resumes once the forces return below the maximum limits.

B. Experiments
Fig. 7 shows master and slave position tracking for a

Sensable Omni master and slave using the above framework.
Given the modular nature of our implementation, we can
easily introduce local models for the remote device into our
architecture to compensate for varying update rates, network
latencies, and packet loss. In these experiments, we use
simple Euler integration:

x(t) = x(t− 1) + �t ∗ ẋ(t− 1) (7)



(a) The Sensable Omni Master/Slave Setup with a Stereo Viewer (b) The Novint Falcon

Fig. 5: The Devices Used in Our Experimental Setup

Fig. 6: Block Diagram of Teleoperation Architecture.

Fig. 7: Position tracking for Omni master and slave manipulators for line movement (left) and sinusoidal input (right).



Other controllers and local models can be integrated by
replacing this simple model. We can teleoperate any com-
bination of our haptic devices–two Omnis as master and
slave, two Falcons as master and slave, a mixed configu-
ration, or using the da Vinci master’s as slaves over the da
Vinci research API. The experimental framework allows for
configurable task updates; here we used a 1.0ms task period.

To simulate the delay of our network layer, we created a
DelayTask. This task delays the reading of positions from
the two devices, simulating a delay that could potentially
be created by a network layer. Using this task and simple
Euler integration mentioned above, we ran two teleoperative
experiments to visualize the effects of the delay and our
efforts to correct for the errors introduced.

We tested the CollaborativeControlForce with delay
under two circumstances: point-to-point motion and sinu-
soidal wave teleoperation. In the point to point case, we
moved the master device manually and observed the slave
device following. In the sinusoidal wave case, we fed the
sinusoidal wave to the master device, and let the slave device
follow. In both cases, the offset between the positions of the
two devices (y-axis in Fig. 7) is negligible. This offset results
from the initial repositioning of the devices to align, which
is beyond the scope of this paper. However, the difference of
the positions over time (x-axis in Fig. 7) significantly shows
the delay of one device versus the other. In the sinusoidal
wave case, we observed that with the introduction of the
DelayTask, the slave device has an obvious delay with
respect to the master. Subsequently, with the addition of the
Euler integration, we observed a decrease in the delay of the
slave device compared to the master.

III. CONCLUSIONS

This paper presented the SAW component-based frame-
work and described the communication between component
interfaces, which is identical for the single process (multi-
threaded) and multi-process cases. While the single process
case obviously produces the lowest latency, an efficient
network layer based on ICE provides latencies less than a
few hundred microseconds for optimal network topologies,
such as single-hop wired Ethernet, and on the order of a few
milliseconds for typical multi-hop wired/wireless networks.
The former is suitable for high-bandwidth (kiloHertz) closed-
loop control, whereas the latter is an acceptable haptic
update rate for teleoperation tasks. The paper further pre-
sented a teleoperation application for robotic surgery systems
based on the SAW framework, including implementations
for common haptic devices and integration with the da Vinci
surgical system. Experiments utilizing the da Vinci master
manipulators are ongoing. We are also integrating the ability
to share synchronized video and state over the network, as
well as local models of state to overcome network latency
and data loss.
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