

Checkpoint Presentation: Integration of CBCT and a Skull Base Drilling Robot

Team member: Hao Dang, Zihan Chen Mentors: Jeff Siewerdsen, Peter Kazanzides Course mentor: Russ Taylor

April 7, 2011

Background & Motivation

Goal: Integrate C-arm CBCT into robotic system

NeuroMate Robot

Patient figure from http://www.mayfieldclinic.com/PE-Craniotomy.htm

Tracker figure from http://4navitec.com/Products/Consulting/Characterization/body_characterization.html

Milestones & Progress

• Milestone 1: CT-Tracker registration

– Planned Date: Feb. 28 done!

- Milestone 2: CT-CBCT registration
 Planned Date: Mar. 12 done!
- Milestone 3: Robot-Tracker registration
 <u>– Planned Date: Mar. 31</u> done!

CT-Tracker registration

- Hardware platform: NDI Polaris
- Software platform: TREK--Imaging and surgical navigation platform of the I-STAR Lab
- System Setup
 - Checked out/compiled latest version
 - Calibrated offset of NDI pointer
 - Configure 'tracker' and 'Registration' module

- Registration results
 - Mean FRE: 0.5~0.8 mm
 - Mean TRE: <1mm</p>
- Data for this demo
 - 5 fiducials, 3 targets
 - Mean FRE: 0.85 (0.71, 0.55, 0.20, 1.83, 0.98)
 - Mean TRE: 0.92 (0.43, 0.71, 1.62)

CT-CBCT registration

- Goal: register two 3D volumes
 - Fiducial based registration (Min and Expected)
 - Image based deformable registration (Max)
- Software Platform: TREK
- Result

(1) Fiducial based

- Mean FRE: ~0.8 mm (<1mm)</p>
- Mean TRE: ~1mm

Data for demo on next slide

- 4 fiducials, 2 targets
- Mean FRE: 0.86 (0.75, 1.20, 0.55, 0.93)
- Mean TRE: 0.84 (0.85, 0.83)

(2) Image based rigid: did not work well.

The difference in intensity pattern seems to require advanced processing like intensity matching. Directly turn to deformable registration later (optional)

Two pairs of fiducials are overlaid.

Overlay CT and CBCT images

Robot-Tracker registration

Robot-Tracker registration

In a sport

- Robot Pivot calibration
- 6 position
- Ball in Cone Search Method
- Data collection

Robot-Tracker registration

Beep 5
Calibration Calibrate Pointer
Initialize Track Record
Pointer
X Y Z
-70.0592 -159.42 -1873
Collect

- devNDIserial component
- Pivot Calibration
- Tooltip position
- Data collection & Analysis

Robot-CBCT/CT registration

- Guide the robot to fiducials on the Red Skull
- Registration

Review deliverables

- Minimum
 - Fusion of intro-opera CBCT and pre-opera CT images by fiducial-based rigid registration (achieved)
 - Complete transformation flow including robot, skull, CBCT images along with navigation system (achieved)
 - Target-pointing experiment on phantom using CBCT-Guided skull base drilling robot system(CBR system) with navigation
- Expected
 - Foam-drilling experiment on phantom using CGR system with navigation
 - Transformation flow including robot, skull, CBCT images without navigation (achieved)
 - Parallel phantom experiments using two CGR systems and previous non-CBCT system. Compare results.

Review dependencies

No.	Dependencies	State	Date	
1	Access to NeuroMate [®] Robot	100%	N/A	Got access to mock room
2	Move robot to Med Sch	20%	03/20/ 2011	Further discussion needed
3	Access to CBCT and MISTC	100%	N/A	N/A
4	Radiation traingin & badge	50%	02/24/ 2011	Hao OK, Zihan working on it
5	Phantom	100%	N/A	Red Skull in Jeff's lab
6	Cadaver & Neurosurgeo	20%	TBD	Need assess after phase 2. Got support from Jeff
7	Bio hazard training	20%	TBD	Online training

One step towards a more elegant system: Interaction via ICE

Documentation

The following are well documented:

- Hardware setup
 - NDI Tracking system
 - NeuroMate Robot
- Software setup on Linux and Windows
 - CISST compiled with Qt
 - TREK
- Our codes on SkullBase Robot (SVN)
- Results and analysis for each registration
- Weekly meet notes and slides

Future milestones

- Milestone 4: Target-pointing experiments on Red Skull Phantom (Mock Room)
- Milestone 5: Move Robot to Medical Campus
- Milestone 6: Drilling experiments on another phantom (Medical Campus)
- Maximum: Cadaver studies

Changes in timeline

Project Timeline: Integration of CBCT and a Skull Base Drilling Robot

Hao Dang, Zihan Chen

m	February				March				April				May			
Tasks	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Background Reading																
Project Proposal & Presentation																1
			Phas	e 1: Reg	gistratio	n and R	obot C	ontrol		5						
CBCT to Navigation Regstration																
CBCT/CT to Robot Direct Registration					2											
CT to CBCT Registration																
Robot to Naviagtion Regsitration																
Virtual Fixture and Control							<i></i>									
]	Phase 2	: Progra	mming	and Sys	tem In	tegration	1							
devNIDserial Programming																
TREK & Robot communication																
Integration																
				Pha	ase 3: E	xperime	ent									
System without Navigation																
Phantom Pointing																
Phantom Drilling)																
Phase 4: Analysis and Final Report																
Further Analysis																
Final Report																
Documentation																
Cadaver (Optional)																
Image Based Registration (Optional)																

Proposal
Phase 1
Phase 2
 Phase 3
Phase 4
Documentation

Key Dates					
02/22/2011	Presentation				
03/27/2011	Finish Phase 1				
04/21/2011	Finish Phase 2				
05/07/2011	Phantom Drilling				
05/19/2011	Final Poster				

Future challenges

- Robot movement
- Larger registration error after integrating each part into a system
- Performance of current virtual fixture implementation

Thank you! Questions?