Integration of CBCT and a Skull Base Drilling Robot

Team member: Hao Dang, Zihan Chen Mentors: Jeff Siewerdsen, Peter Kazanzides Course mentor: Russ Taylor

Outline

- Background & Motivation
- Project Goals
- Technical Approach
- Deliverables
- Timeline
- Dependencies
- Management Plan
- Assigned Responsibilities
- Reading List

Background

Neurosurgery has many challenges:

- Complex anatomy
- Complex bone removal for tumor resection
- Critical nature of adjacent neural and vascular structures

Fig1

- For example, acoustic neuroma surgery
 drill the posterior wall of the internal auditory canal (ICA)
 - •critical structures
 - •semicircular canals
 - •the cochlea
 - •facial nerve are within millimeters.

Fig1: http://fotosa.ru/ru/stock/search.asp?ID=2113807&anchor=2, Fig2: http://www.gammaknifeonline.in/gamma_knife_for_acoustic_neuroma

Image guided robots —well suited to neurosurgery

Basis:

- Static nature of human skull
- Locally fixed segments of the spine

Advantages:

• Precise intra-operative guidance

limits of human vision

- Mechanical assistance
- Virtual fixture

limits of fatigue and dexterity

outcut, damage critical structure

Skull base drilling robot system

System overview

StealthStation navigation system

NeuroMate Robot

3D Slicer Virtual fixture

Performance

Foam Skull: Average placement error—0.6 mm Average dimensional error—0.6 mm

Cadaver head: Outcut—1–2 mm, with maximum about 3 mm. Uncut—not critical

Images are from An integrated system for planning, navigation and robotic assistance for skull base surgery. Tian Xia, Peter Kazanzides, etc*. The International Journal of Medical Robotics and Computer Assisted Surgery, Volume 4, Issue 4, pages 321–330, December 2008

Motivation

- Note that the pre-opera registration residual error
 - Stealth reference frame to the Stealth CT frame <1 mm
 - reference frame to the Robot world frame <0.5 mm
- Why starts with good registration but ends with larger outcut?
 - Virtual fixture is not updated intraoperatively
 - Defined on pre-CT
 - Deformation exists
 - head pose(in pre-CT and surgery)
 - bone drill out
 - soft tissue
 - Solution: intra-opera images
 - Navigation system also prefers
 - Other reasons
 - robot kinematic error
 - skull motion...

Fig1

Fig1: Siewerdsen JH, Moseley DJ, Burch S., Bisland S, Bogaards A, Wilson BA, and Jaffray DA, "Volume CT with a flat-panel detector on a mobile, isocentric Carm: Pre-clinical investigation in guidance of minimally invasive surgery," Med. Phys. 32(1): 241-254 (2005).

Project Goals

Integrate C-arm CBCT into robotic system

- Transform pre-defined and updated virtual fixture to robot world frame via
 - Pre-CT to CBCT images registration
 - CBCT images to the NeuroMate robot registration
- Examine performance of the integrated system
 - Two forms of phantom experiments (Target-pointing and Foam drilling) and hopefully cadaver experiments
 - Compare two versions of integrated systems (with and without navigation) with previous non-CBCT system

Prototype CBCT imaging system in Prof.
Siewerdsen's lab (with Siemens)
✓ Based on a mobile isocentric C-arm
✓ sub-mm 3D spatial resolution
✓ soft tissue visibility
✓ Typical acquisition and reconstruction time are ~60s and ~20s respectively

Technical Approach

1. CBCT guided robot system with navigation

CBCT guided robot system without navigation

3. Non-CBCT guided robot system without navigation

- Take the first CBCT Images after patient's head is fixed
- Segment fiducial locations in CBCT and CT images
- Paired-point registration(Min)

Fig1 fiducials in CBCT

Fig2 fiducials in CT

- Register following CBCT images with former ones
- Image-based deformable registration (max)
 - Difference between images is usually deformable
 - e.g. Demons deformable registration with intensity matching

Fig1: Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions. Hamming NM, Daly MJ, Irish JC, Siewerdsen JH. Med Phys. 2009 May;36(5):1800-12.

Pre-opera CT Navigation Skull

- Point passive probe to fiducials on skull within navigation system FOV
- Paired-point registration with fiducial locations in CT frame
- Repeat until reaching acceptable registration error

Fig2

The image above is modified Fig2 in Accuracy Improvement of a Neurosurgical Robot System. HaideggerT., Tian Xia, Kazanzides, P.Biomedical Robotics and Biomechatronics, 2008. 2nd IEEE RAS & EMBS International Conference on, pages 836 – 841, 27 January 2009

2 Robot \longleftrightarrow Skull \longleftrightarrow CBCT

- Do pivot calibration, \vec{P}_t
- Guide robot pointer directly to fiducials on skull in cooperative mode
- Register fiducial locations in robot world frame to locations in CBCT frame
- Carefully position the robot with respect to the head to avoid the kinematic singularities Tool Center Point

Deliverables 1

- Minimum
 - Fusion of intro-opera CBCT and pre-opera CT images by fiducial-based rigid registration
 - Complete transformation flow including robot, skull, CBCT images along with navigation system
 - Target-pointing experiment on phantom using CBCT-Guided skull base drilling robot system(CBR system) with navigation

Deliverables 2

- Expected
 - Foam-drilling experiment on phantom using CGR system with navigation
 - Transformation flow including robot, skull, CBCT images without navigation
 - Parallel phantom experiments using two CGR systems and previous non-CBCT system. Compare results.
- Maximum
 - Imaged-based CBCT to CT registration framework
 - Cadaver experiment using CGR system and comparison of results with Phantom studies

Timeline

Project Timeline: Integration of CBCT and a Skull Base Drilling Robot

Hao Dang, Zihan Chen

The Loc	February			March				April				May				
Tasks	1	2	3	- 4	1	2	3	4	1	2	3	4	1	2	3	4
Background Reading																
Project Proposal & Presentation																
Phase 1: Registration and Robot Control																
CBCT to Navigation Regstration																
CBCT/CT to Robot Direct Registration																
CT to CBCT Registration																
Robot to Naviagtion Regsitration					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Virtual Fixture and Control																
Phase 2: Expriement																
System without Navigation																
System Integration and Phantom Pointing																
Phantom Foam Drilling																
Cadaver (Optional)																
Phase 3: Analysis and Final Report																
Image Based Registration (Optional)																
Further Analysis															1	
Final Report																
Documentation																

	Proposal		
2/////2	Phase 1		
	Phase 2		
	Phase 3		
	Documentation		

Key Dates			
02/22/2011	Presentation		
03/27/2011	Finish Phase 1		
04/15/2011	Phantom Foam Drilling		
05/19/2011	Final Poster		

Dependencies

No.	Dependencies	State	Date	
1	Access to NeuroMate [®] Robot	100%	N/A	Got access to mock room
2	Move robot to Med Sch	20%	03/20/	Further discussion needed
			2011	
3	Access to CBCT and MISTC	100%	N/A	N/A
4	Radiation traingin & badge	50%	02/24/	Hao OK, Zihan working on it
			2011	
5	Phantom	100%	N/A	Red Skull in Jeff's lab
6	Cadaver & Neurosurgeo	20%	TBD	Need assess after phase 2.
				Got support from Jeff
7	Bio hazard training	20%	03/20	Online training

Budget: Rental fee of a truck to move robot to medical school. ~\$50.Prof. Peter will support.

Management Plan

- Weekly meet with Prof. Peter in Hackerman Hall and Prof. Jeff in Traylor Research Building separately.
- Monthly meet with Prof. Peter and Prof. Jeff together.
 Place TBD.
- Present plan, checkpoint and final results, receive feedback from Prof. Taylor and the class.
- 15 hours per person for programming/experiments/ discussion every week.
- Access the viability of Phase 2 when Phase 1 is finished.

Responsibilities

Phase I				
CBCT to Navigation Registration	Hao Dang			
CBCT/CT to Robot Direct Registration	Zihan Chen			
CT to CBCT Registration	Hao Dang			
Robot to Navigation Registration	Hao Dang, Zihan Chen			
Virtual Fixture and Control	Zihan Chen			
Phase II				
System without Navigation	Zihan Chen			
System Integration and Phantom Pointing	Hao Dang, Zihan Chen			
Phantom Foam Drilling	Hao Dang, Zihan Chen			
Cadaver (Optional)	Hao Dang			
Phase III				
Image based Registration (Optional)	Hao Dang, Zihan Chen			
Further Analysis	Hao Dang, Zihan Chen			
Final Report	Hao Dang, Zihan Chen			
Documentation	Hao Dang, Zihan Chen			

Reading List

Robotic system

- Accuracy Improvement of a Neurosurgical Robot System.HaideggerT., Tian Xia, Kazanzides, P.Biomedical Robotics and Biomechatronics, 2008. 2nd IEEE RAS & EMBS International Conference on, pages 836 – 841, 27 January 2009
- An integrated system for planning, navigation and robotic assistance for skull base surgery. Tian Xia, Clint Baird, George Jallo, Kathryn Hayes, Nobuyuki Nakajima, Nobuhiko Hata, Peter Kazanzides*. The International Journal of Medical Robotics and Computer Assisted Surgery, Volume 4, Issue 4, pages 321–330, December 2008

C-Arm Cone Bean CT

- Siewerdsen JH, Daly MJ, Chan H, Nithiananthan S, Hamming N, Brock KK, and Irish JC, "Highperformance intraoperative cone-beam CT on a mobile C-arm: An integrated system for guidance of head and neck surgery," Proc. SPIE Visualization and Image-Guided Procedures Vol. 7261: 72610J-1 – 72610J-8 (2009).
- Nithiananthan S, Brock KK, Daly MJ, Chan H, Irish JC, and Siewerdsen JH, "Demons deformable registration for cone-beam CT guidance: Registration or pre- and intra-operative images," Proc. SPIE Visualization and Image-Guided Procedures, Vol. 7265: 72650L-1:7 (2010).
- 3. Bachar G, Barker E, Chan H, Daly MJ, Nithiananthan S, Vescan A, Irish JC, and Siewerdsen JH, "Visualization of anterior skull base defects with intraoperative cone-beam CT," Head and Neck 32(4): 504-512 (2010).
- 4. Daly MJ, Siewerdsen JH, Cho YB, Jaffray DA, and Irish JC, "Geometric calibration of a cone-beam CT-capable mobile C-arm," Med. Phys. 35(5): 2124-2136 (2008).
- 5. Daly MJ, Siewerdsen JH, Moseley DJ, Jaffray DA, and Irish JC, "Cone-beam CT for imageguided head and neck surgery: Assessment of dose and image quality using a C-arm prototype," Med. Phys. 33(10): 3767-3780 (2006).

Q & A