# Emotion Sensitive Speech Control and Noise Reduction in Minimally Invasive Surgery

Lindsey Dean

### Project Statement

 Propose to integrate speech recognition software into Da Vinci robot for control of novel functions

### Problem

- Voice control has been part of other systems such as AESOP but has failed due to:
  - Long reaction time
  - Limited reliability
  - User dependent interface



### Areas of Research

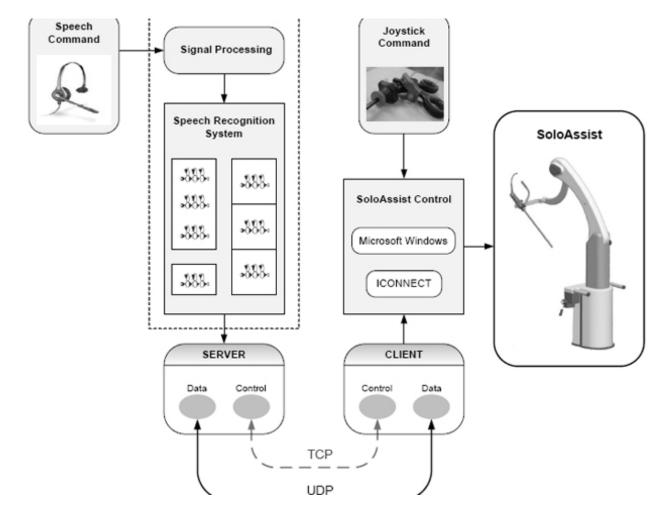
- Emotion Sensitive Speech Control
  - Emotion Sensitive Speech Control for Human-Robot Interaction in Minimal Invasive Surgery
- Noise Reduction Strategies
  - Speech Control in Surgery: A field Analysis and Strategies
- Both papers working on SIMIS (Speech in Minimally Invasive Surgery) Database – research tool

### **Emotion Sensitive Speech Control**

- social competence can be integrated into speech control through emotional recognition
- allow interface to recognize emotion, can be utilized in cases where surgeon sounds angry or confused to initialize the computer to ask for feedback confirmation

### **Noise Reduction Strategies**

- Optimize noise reduction by qualifying "silence" found in live OR
- Use feature enhancement algorithms to improve accuracy of recognition in noisy environments OR environment


SoloAssist SIMIS Database

### **EXPERIMENTAL SET-UP**

### SoloAssist – AktorMed Germany



### Speech Control Interface for SoloAssisst



### **SIMIS** Database

- Surgery in Minimally Invasive Surgery
- 20 recording of live minimally invasive surgeries
  - Segmentation of speech
  - Emotion recognition: labeling of emotion classes of speech
  - Noise reduction: distinguish "noise" sounds from words spoken to robot and label

#### **KEY RESULTS**

#### Table IV – Distribution of Speech Turns Among Emotion By Time and Turn Number Within SIMIS Database

|                | [m:s]  | speecl<br>[m:s] | h<br># | neutr<br>[m:s] | al<br># | happy<br>[m:s] | ,<br># | angry<br>[m:s] | #   | impat<br>[m:s] | ient<br># | confu<br>[m:s] | sed<br># |
|----------------|--------|-----------------|--------|----------------|---------|----------------|--------|----------------|-----|----------------|-----------|----------------|----------|
| Gall           | 36:49  | 6:05            | 190    | 2:30           | 69      | 1:13           | 48     | 0:58           | 26  | 0:54           | 31        | 0:30           | 16       |
|                | 76:14  | 8:13            | 308    | 4:29           | 151     | 1:01           | 56     | 1:06           | 34  | 1:23           | 57        | 0:14           | 19       |
|                | 34:24  | 4:45            | 159    | 3:18           | 109     | 0:24           | 18     | 0:30           | 15  | 0:09           | 5         | 0:24           | 12       |
|                | 36:36  | 8:41            | 257    | 6:11           | 174     | 1:47           | 49     | 0:21           | 7   | 0:38           | 18        | 0:15           | 10       |
| Fundoplicatio  | 54:33  | 15:05           | 456    | 8:26           | 248     | 1:01           | 41     | 1:57           | 51  | 2:30           | 75        | 1:11           | 41       |
|                | 76:25  | 16:44           | 523    | 10:31          | 331     | 1:22           | 57     | 1:23           | 37  | 2:05           | 54        | 1:23           | 44       |
| Sigma<br>Wedge | 80:08  | 14:03           | 201    | 7:35           | 97      | 1:19           | 21     | 1:08           | 19  | 1:20           | 19        | 2:41           | 45       |
|                | 53:59  | 12:01           | 340    | 7:04           | 189     | 1:14           | 43     | 0:34           | 22  | 1:57           | 53        | 1:00           | 33       |
|                | 53:51  | 13:22           | 295    | 9:04           | 204     | 0:47           | 22     | 0:57           | 15  | 1:35           | 31        | 0:59           | 23       |
| Stomach        | 71:01  | 15:18           | 306    | 6:25           | 121     | 2:15           | 48     | 2:05           | 39  | 2:59           | 62        | 1:34           | 35       |
| total          | 574:00 | 114:17          | 3035   | 65:33          | 1509    | 15:45          | 403    | 10:09          | 265 | 15:30          | 405       | 10:11          | 278      |

### Emotion Sensitive Speech Recognition: Key Results

- Labeled 3035 words of spontaneous real-life speech from OR
  - Only 53% of surgeon-robot interactions were labeled neutral

### Emotion Sensitive Speech Recognition: Key Results continued

- Can constrain emotional mapping to two dimensions: neutral and positive vs. negative
  - Discriminate only where a feedback dialogue needs to be initialized

| %  | Ave  | Std dev | Max  |
|----|------|---------|------|
| RR | 75.5 | 7.7     | 92.5 |
| CL | 71.4 | 10.6    | 92.3 |
| F1 | 73.3 | 9.1     | 92.4 |

### Modeling Silence in the Operating Room

- •Standard background noise
- Instrument click noise
- •Background talk
- •Stressed breath or cough

|                | Turns | Turns/OP | Distribution<br>(%) | Time [m:s] |
|----------------|-------|----------|---------------------|------------|
| Std.background | 19855 | 993      | 57.9                | 583:07     |
| Instr.clock    | 7839  | 392      | 22.9                | 230:13     |
| Bkgrd.talk     | 3015  | 151      | 8.8                 | 88:31      |
| Str.breath     | 3575  | 179      | 10.4                | 105:02     |
| Total          | 34284 | 1715     | 100                 | 1006:53    |

### Noise Reduction Strategies: Key Results

Table 3: Accuracies for Different Noise Reduction Methods and Noise Types

|                  | MFC   | PLP   | ΝΤ    | CMS   | HEQ   | SDM   |
|------------------|-------|-------|-------|-------|-------|-------|
| clean            | 98.53 | 98.16 | 97.06 | 87.50 | 97.43 | 92.96 |
| High SNR         | 92.59 | 92.96 | 97.06 | 81.99 | 95.96 | 92.52 |
| Med SNR          | 90.49 | 90.49 | 95.22 | 79.78 | 95.22 | 90.15 |
| Low SNR          | 89.34 | 89.63 | 94.12 | 79.04 | 93.75 | 88.56 |
| Std.bkgrd        | 91.65 | 92.65 | 95.59 | 86.4  | 97.06 | 92.11 |
| instr,.click     | 89.34 | 89.63 | 95.96 | 81.62 | 94.12 | 92.22 |
| Bkgrd.talk       | 89.71 | 89.71 | 94.85 | 80.51 | 94.41 | 88.42 |
| Str.breath       | 79.41 | 79.62 | 90.07 | 77.57 | 90.81 | 85.84 |
| mean             | 90.13 | 90.36 | 94.99 | 81.80 | 94.84 | 90.35 |
| Weighted<br>mean | 86.67 | 90.34 | 95.03 | 83.87 | 95.50 | 91.16 |

Relevance and Further Work

#### ASSESSMENT

### **Relevance to Class Project**

- Not planning to work directly with speech recognition engine however important to understand how they work and features of voice
- Measuring silence in the operating room directly
- Emotion sensitive speech recognition beyond scope
  However feedback from robot based on voice in important
- Vocabulary developed for speech interface
- Security feedback based on AI related to surgeons emotions, vocal feedback
  - May not need to be based on acoustic features but rather out of the ordinary decisions
- SIMIS database potential research tool

## Possible Steps to Further Work

- Noise reduction modeled noise with Gaussian would be interesting to use other method to model noise
- Expand SIMIS database
- Design program that uses precedent emotion to predict next since emotions do not change frequently in real life (reduce search size)

# Bibliography

- Schuller, Bjorn, Gerhard Rigoll, Salman Can, and Hubertus Feussner. "Emotion Sensitive Speech Control for Human-Robot Interaction in Minimal Invasive Surgery." Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication(2008): 453-58. Print.
- Schuller, Bjorn, Salman Can, Hubertus Feussner, Martin Wollmer, Dejan Arisc, and Benedikt Hornler. "SPEECH CONTROL IN SURGERY: A FIELD ANALYSIS AND STRATEGIES." *Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on* (2009): 1214-217. Print.