Voice Control and Artificial Intelligence

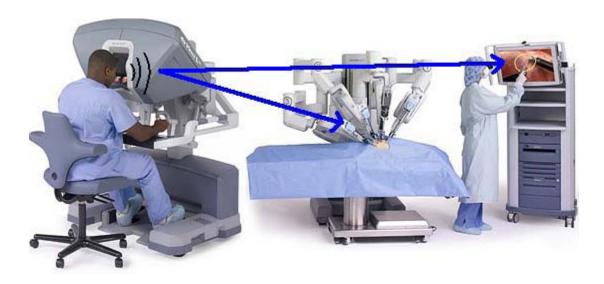
H. Shawn Xu May 03, 2011

1

CIS II Paper Presentation

My Project

Allow surgeon to control certain parts of the *da Vinci*[®] system via voice


- The da Vinci[®] is a robotic teleoperated surgical system
- Controlled by surgeon at HD workstation with hands and feet

PROBLEM:

Complex gestures, stop-start procedures

My Project (continued)

Thinking Beyond My Project...

- We demoed how voice might be used to interact with the *da Vinci*[®] system to Intuitive Surgical
- We are adding some additional functionality to our demo
- All very nice, but what else is possible?

p2nSpeech

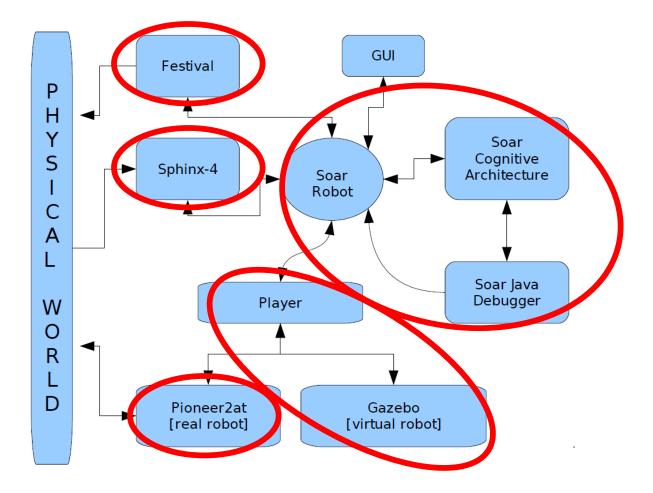
A cognitive architecture approach to robot voice control and response

- Siddtharth Patel (Masters student at Pace University)
- Published in 2008
- http://support.csis.pace.edu/CSISWeb/docs/ MSThesis/PatelSiddtharth.pdf

Summary

p2nSpeech is a project that "aims to explore the ways to command a robot using human voice and also enable the robot to exhibit cognitive behavior."

Design Overview


Pioneer robot:

- Player–Gazebo: robot simulator
- Festival: speech synthesis
- Sphinx 4: speech recognition
- SOAR: unified cognitive architecture

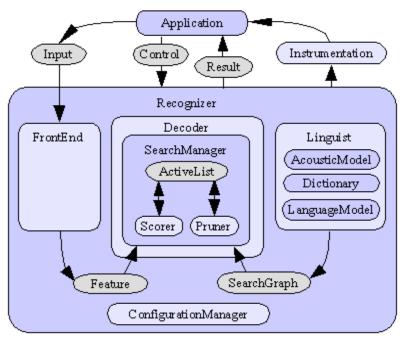
Design Overview (Continued)

Pioneer Robot

- Mobile robot with solid rubber tires, a twowheel differential, reversible drive system and a rear caster for balance
- Interacts with the real-world
 - multiple sonar sensors
 - stereo camera
 - position/speed encoders

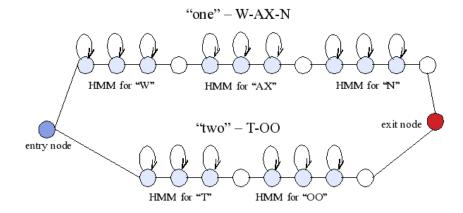
Player-Gazebo

- Open-source robot simulator
- Player gets real-world information from sensors of robot
- Gazebo builds 3D virtual environment with robot in it


Festival

 Full text-to-speech support for multiple languages (English is most advanced)

Sphinx 4


- Speech recognition package developed in Java
- WE USED THIS PACKAGE FOR OUR PROJECT
- Architecture overview:

How It Works

- A word, is many phonemes (unit of sound) strung together
- Short time periods of speech can be treated as stochastic process, specifically a Hidden Markov Model

How It Works (Continued)

- User defines a grammar, which is converted into a search graph
- Live audio is converted into a stream of sound features
- Search manager runs the the stream of features through the search graph, and determines what was said based on a running statistical score that is kept

SOAR

- Unified cognitive architecture that "[allows] knowledge to be encoded and used to produce action in pursuit of goals."
- Rule-based
- Terminology
 - State: representation of current situation
 - Operator: transforms a state
 - Goal: desired outcome

Sample SOAR Code

 $sp \{R1$

(State <s> ^forecast-info RAIN)

(<s> ^output BRING-AN-UMBRELLA)

}

sp {R2

(State <s> - forecast-info RAIN)

-->

}

(<s> ^output DO-NOT-BRING-AN-UMBRELLA)

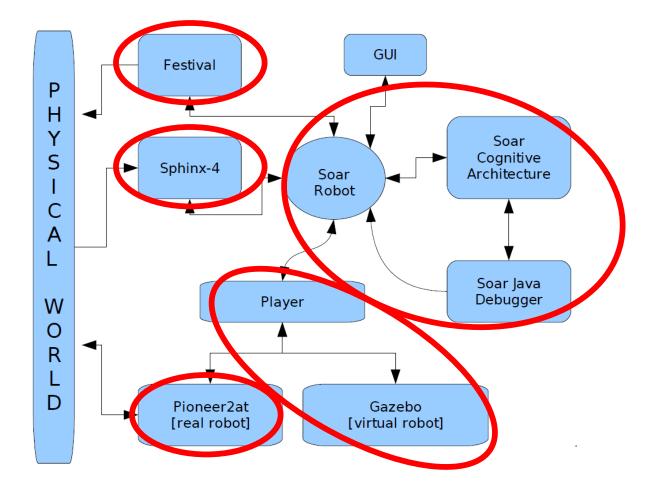
How It Works

- User defines "if-then" rules and assigns preferences to them (long-term knowledge)
- When the program is running
 - The system examines the conditions of every rule and determines a subset that matches the current state
 - Using a conflict resolution based on preference, the system determines the corresponding operator
 - Repeat until desired outcome is achieved and send output commands to external environment

More In-Depth

Five-phased active cycle

- Input: new data comes into working memory (<u>short-</u> <u>term memory</u>)
- 2. Proposal: interpret new data, propose operator for rules with a matching condition, determine would-be changes to state, and repeat
- 3. Decision: compare and decide on next operator
- 4. Application: apply new operator, and if there are changes to state, go back to phase 1
- 5. Output: send output commands



Learning and Long-Term Memory

- At decision stage, preferences could be incomplete or insufficient, and thus system is at an impasse and doesn't know what to do
- User resolves impasse with input
- System creates substate and remembers the processing as new pseudo-rules (<u>learning</u>)
- This new information is stored in system's working memory (<u>long-term memory</u>)

Design Revisited

p2nSpeech in Action

- A basic application:
 - SOAR-Robot receives a command to move forward (from Sphinx 4)
 - Based on sonar sensors (from Player), SOAR determines if there is an obstacle directly in front
 - If so, tell robot to turn
 - If not, move robot forward, update information, repeat until there is an obstacle in front
- Possibilities for further exploration
 - Pre-command model information from Player-Gazebo
 - Learning

Back to My Project

- How might we use these ideas to better integrate voice control with a surgical robot?
- Cognitive decision-making allows for much more natural interaction between human and machine
 - Improve existing functionality (e.g.: measurement)
 - Opens door for more complex functionality to be added with voice (e.g.: control of patient-side)
- But we must always be aware of maintaining full and precise master control
 - Natural and intuitive vs. precise and accurate

Thank You

