Voice Control of *da Vinci®* Surgical System Lindsey Dean and H. Shawn Xu Mentor: Anton Deguet

Outline

- 1. Background
- 2. Motivation and Significance
- 3. Project Goal
- 4. Technical Approach
- 5. Deliverables
- 6. Tasks and Dependencies
- 7. Timeline and Milestones
- 8. Management Plan

Background

What is the *da Vinci*®?

- A robotic teleoperated surgical system that enables surgeons "to perform complex and delicate operations through a few tiny incisions with increased vision, precision, dexterity and control."
- A new generation of surgery
- Developed by Intuitive Surgical (NASDAQ: ISRG) in 1999
- \$1-2.3M not including any attachments or maintenance plan

da Vinci® Surgery

- Surgeon seated at HD console
- EndoWrist instruments
 - Precise
 - Tremor–reduced
 - Natural
- Ports: MI incisions

Advantages

- Patient Value
 - Efficacy/Invasiveness
- Surgeon Value
 - Repeatable & Teachable
 - Reliable
- Hospital Value
 - Economic Benefit

Uses

- Urology
 - Prostatectomy, nephrectomy, cystectomy, and pyeloplasty
- Gynecology
 - Hysterectomy, sacral colpopexy, myomectomy, and endometrial resection
- General Surgery
 - Colorectal procedures
- Cardiothoracic
 - Mitral valve repair, revascularization
- Head & Neck
 - Transoral procedures

Usage Statistics

- 1,752 systems installed worldwide
- > 278,000 procedures performed in 2010
 - Over 40% average yearly growth since 2005

Motivation and Significance

Problems

- Too many features to interact with
- A surgeon only has
 - One head
 - Two hands
 - Two feet
- Complex gestures
- Stop-start procedures
- Leads to inefficiency

An Analogous Example:

Current Solutions

- Dual console interaction (Intuitive)
- Onscreen interactive digital 3DUI (CISST)
 - Allows surgeon
 - to overlay images on his viewing screen as he is performing surgery
 - to mark locations
 - to perform basic tasks such as measuring distance between two relevant points
- But...
 - Still need to pause surgery

Proposed Solution

Voice Control

Project Goal

>>> Develop a way for the surgeon to interact with the surgical tools, camera, display, etc. using his/her voice

Technical Approach

What We Will Use

- Hardware
 - Microphone
 - *Da Vinci*® System
 - PC
- Software
 - CISST Libraries for interacting with *da Vinci*[®] Surgical System
 - C++ wrapper of Sphynx 4 JAVA speech recognition system
 - 3DUI: an interactive digital UI that surgeons can see and use during surgery
 - A text-to-speech package

System Overview

Software Architecture

State-Based Approach

- Currently, we are favoring a state-based implementation for speech-to-command
- Program keeps track of current "state" of system
- User can switch between different states using voice commands
- System state determines which voice commands are authorized at any time
- Universally accepted commands?

Example

- User says "measure left." System switches to state 'Measure Left'
- 2. User says "begin." Because state is 'Measure', system begins measuring.
- 3. User moves tool controlled by left hand to new location and says "stop." System displays distance moved.
- 4. User says "exit." System exits to default state.

Deliverables

Deliverables

Minimum

- Well-documented program that adds singular functionality
- A video demonstration of voice control

Expected

- Add multi-state functionality
- Additional demonstration(s) that show different functions voice can perform on Da Vinci

Maximum

 Fully-functioning library of states and commands that can be easily expanded upon

Tasks and Dependencies

Exploratory Phase

- Experiment with voice recognition in other applications
 - What works well? What doesn't?
- Experiment with *da Vinci*[®] system and 3DUI
 - Determine what is most appropriate for voice integration
 - Determine what makes sense as "states"
- Goal:
 - Formulate lists of states and commands
 - Find ideas for video demonstrations

Design Phase

- Familiarize ourselves with CISST libraries, specifically control of *da Vinci*[®] robot and 3DUI
- Familiarize ourselves with Sphynx 4 and C++ wrapper
- Flesh out software architecture
- Goal:
 - A detailed design of how the software will work, including classes, methods, key variables, etc.

Implementation Phase

2 Concurrent Paths

- 1. Build speech-to-command program
- 2. Film video demonstrations

Our Plan

- Get a very simple program working that can do only one or two things
- Analyze our voice control process when used in practice and improve/modify accordingly
 - E.g.: should we ask for confirmation? is our process the best one in practice? safety issues?
 - Documentation is key here!
- Film first demonstration(s)
- Repeatedly add to program capabilities, analyze, document and film whenever we have a good idea for a demonstration

Dependencies

	Being done to resolve	Affects	Resolve by		
Access to Mock OR	Allison Morrow	Exploratory Phase	2/21		
NDA w. Intuitive Surgical	Alyssa	Exploratory Phase	2/21		
JHED Access to Mock OR computer	Anton	Exploratory Phase	2/27		
Time with Anton to put necessary software on computers	Anton	Design Phase	3/6		
Sphynx 4 C++ Wrapper	CS undergrad should be done in 2 weeks	Design Phase	3/12		
Video Camera	DMC has available to reserve	Implementation Phase	April		

Timeline and Milestones

Timeline

	Feb 20	Feb 27	Mar 6		Mar 13	Mar 20	Mar 27	Apr 3	Apr 10		Apr 17	Apr 24	May 1	May 8		May 15
Exploratory Phase																
Init. Design Phase																
Implementation Phase																
Build simple program																
Analyze/modify				Design	reak					st Film					roject	
Film 1 st demonstration				Finish [ng Bı					Finish 1					Finish P	
Add functionality					Sprii										_	
Document																
Wrap-Up																
Final Report																
Presentation																

Milestones

- March 13
 - Finish design and list of states and commands
 - Finish software architecture of speech-to-command program
- April 17
 - Finish first video demonstration
- May 15
 - Wrap up all coding
- May 19
 - Poster presentation

Management Plan

Management Specifics

- Weekly meetings with Anton Deguet
- We will be meeting at least twice per week, depending on week-to-week schedule
- During the 1st two phases, our weekly schedule will revolve mostly around when the mock OR is available
- Partner programming in the beginning to learn software
- Weekly on Sunday: assessment of progress and adjustment of schedule

Thank You

Bibliography

- A. Kapoor, A. Deguet, and P. Kazanzides, "Software components and frameworks for medical robot control," in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2006, pp. 3813–3818.
- A. Deguet, R. Kumar, R. Taylor, and P. Kazanzides, "The cisst libraries for computer assisted intervention systems," in MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions, Midas Journal, Sep 2008.
- Liu, Peter X., A.D. C. Chan, and R. Chen. "Voice Based Robot Control." *International Conference on Information Acquisition (ICIA)* (2005): 543. Web. http://ieeexplore.ieee.org.proxy3.library.jhu.edu/stamp/stamp.jsp?tp=&arnumb_er=1635148>.
- Sevinc, Gorkem. INTEGRATION AND EVALUATION OF INTERACTIVE SPEECH CONTROL IN ROBOTIC SURGERY. Thesis. Johns Hopkins University, 2010. Print.
- Schalkwyk, J., Hetherington, L., Story, E. "Speech Recognition with Dynamic Grammars Using Finite-State Transducers." <u>Proc. Eurospeech.</u> Geneva, Switzerland, 2003.