

Robotically Assisted Cochlear Imaging and Access

Team 1

- Members: Ehsan Azimi, Berk Gonenc
- Mentors: R. Taylor, I. Iordachita, J. Kang
- Clinical Mentors: J. Niparko, W. Chien

Outline

Introduction

> Specific Aims

- Clinical Goals
- Project Goals

Progress & Revisions

- Ear Robot System Architecture
- Mechanical Tools
- OCT Imaging and Virtual Fixtures
- Biosafety Issues
- Project Plan & Future Work
 - Dependencies
 - Milestones
 - Timeline
- Bibliography and Reading List

INTRO.

SPEC

AIMS

PROG.

& REV.

P.PLAN &

F.WORK

BIBL &

R.L.

Introduction

THE JOHNS HOPKINS UNIVERSITY

P.PLAN &

F.WORK

Source: www.cochlear.com

BIBL &

R.L.

Advance Off-Stylet Technique

Flexible curved electrode array (1 mm diameter) is advanced into 15-20 mm long channel in 3 steps:

a. The whole electrode is inserted until the white marker reaches cochleostomy site.

b. The stylet is held stationary, electrode is deployed off the stylet. The electrode takes its naturally curved shape.

c. After the ribs reach the cochleostomy site, the stylet is removed.

Computational

JOHNS ROPKINS UNIVERSITY

INTRO.

Location of these steps is very critical!

ERC | CISS1

➢ Specific Aims

- Clinical Goals
- Project Goals

Clinical Goals

- **1.** The electrode should travel in Scala-Tympani with **<u>NO DAMAGE</u>** to the basilar membrane.
- **2.** The electrode should be located as **<u>CLOSE TO MODIOLUS</u>** as possible.

➢ For these, there is a critical location to begin off-stylet technique.

Project Goals

- **1.** Use Optical Coherence Tomography (OCT) to build 3-D cochlea model.
- 2. Use Steady-hand Robot to eliminate hand-tremor.
- **3.** Implement virtual fixtures for use with the robot for optimal electrode placement.

- Ear Robot System Architecture
- Mechanical Tools
- OCT Imaging and Virtual Fixtures
- Biosafety Issues

Mechanical Tools

ERC | CISST

Mechanical Tools

No collision while lowering Collision during axial rotation

PROG. & REV. P.PLAN & BIBL & BIBL & R.L.

Sensing + Robotics

Computational

Mechanical Tools

12/19

optic lens/mirror ass

•Different Approaches for OCT

- 1. Rotating Side view probe
- 2. Front view OCT probe
- 3. Fiber bundles
- 4. Microscopic view as the sample arm

Source: James Lin et al., 2008

Lin et al, Optical Coherence Tomography of Inner Ear

•Virtual Fixture Implementation

- Using Fixtures as a control law in steady hand paradigm
- Constraining virtual contact between electrode tip and cochlear channel
- Modeling the relationship between velocity and force by a linear viscous friction law
- > Defining a direction of motion for the electrode tip along a Cartesian curve in space

Biosafety Issues

Registration for fixed cadaveric temporal bone

Specimens preparation (minimize surface area exposure)
Potential hazards (human pathogens and chemical exposure)
Experimental Protocol(access through small hole)
Safety requirements

 Biohazard and BloodBorne Pathogen Training
 Safety Gear (disposable Nitrile gloves and facial shields)

Cadaver Parts Disposal (at JHMI under the guidance)
Transportation (Triple packaging for leaks or spills)

- Dependencies
- Deliverables
- Timeline

	<u>Dependency</u>	<u>Plan/Source</u>	<u>Status/Comments</u>	
1	OCT imaging system	Schedule with Dr. Kang's lab	Need rescheduling	Delay
2	CI procedure observation	Schedule with Dr. Niparko's assistant	Done	
3	Engineering and clinical mentors	Schedule weekly meeting with the team	Scheduled	
4	Advance Electrode Arrays	Cochlear	We received 5	Updated
5	Bloodborne Pathogen training	Register/ take online class	Done	
6	Fire Safety and Hazard Communication	Register/ take online class	Done	New
7	Temporal bones	Ask Drs. Niparko & Chien	Received	
8	Cochlear phantom with video capture capability	Buy/build/borrow	Building will require a video camera (\$\$)	
9	CISST libraries	Training	Training acquired	
10	3D anatomical model of the inner ear with relevant structures	Order from Amazon	Received	

Computational Sensing + Robotics

LABORATORY FOR

THE JOHNS HOPKINS UNIVERSITY

INTRO.

SPEC. AIMS

PROG. & REV. P.PLAN & **F.WORK**

BIBL & R.L.

	Deliverables					
	1. OCT-adapter design and fabrication for the steady-hand robot					
Minimal	2. Tooling design and fabrication for electrode insertion with the steady-hand robot					
	3. Procedure workflow for robotically assisted implantation					
	1. Software for controlling the motion of OCT probe inside the cochlear canal					
Expected	2. 3-D reconstruction software for building cochlear canal model from OCT images					
	3. OCT scanning videos and images					
	4. Implant insertion videos and images					
	1. OCT system demonstration					
waximal	2. Implant insertion demonstration					

SPEC.

AIMS

INTRO.

PROG.

& REV.

P.PLAN &

F.WORK

0

BIBL &

R.L.

<u>Period</u>	Task	2/13	2/20	2/27	3/05	3/12	3/19	3/26	4/02	4/09	4/16	4/23	4/30	5/07
	Literature Survey													
Planning	OR visit													
Plaining	Detailed Problem Definition and Design Concepts													
Period	Evaluation of Concepts						-							
	Project Proposal Presentation						S	hifte	d					
	Design of OCT Adapter (CAD Model) and Ordering													
	Materials						J							\neg
Design and	Design of Implant Manipulating Adapter (CAD											/ '	Dela	y
	Model) and Ordering Materials													
Fabrication	Development of OCT Control Software													
Period	Development of 3-D Reconstruction Software													
	Implementing Virtual Fixtures													
	Fabrication of Prototypes			Nev	w	\leq								
	Manufacturing the Functional Insertion Tool								\rightarrow				¥	
	OCT Tests on Temporal Bone Model													
OCT lesting	Modifications and Debugging													▼
Period	OCT System Demonstration													
Robot Testing Period	Electrode Insertion Tests on Temporal Bone Model													
	Modifications and Debugging													
	Electrode Insertion Demonstration													
	Final Presentation													

INTRO.

SPEC. AIMS PROG.

& REV.

BIBL & R.L.

Bibliography & Reading List

[1] Lenarz T, Stöver T, Buechner A et al (2006) Temporal bone results and hearing preservation with a new straight electrode.

[2] Roland P, GstöttnerW, AdunkaO (2005) Method for hearing preservation in cochlear implant surgery.

[3] AdunkaOF, Pillsbury HC, Kiefer J (2006) Combining perimodiolar electrode placement and atraumatic insertion properties in cochlear implantation—fact or fantasy?

[4] Adunka OF, Radeloff A, Gstoettner WK et al (2007) Scala tympani cochleostomy. II. Topography and histology.

[5] Briggs RJS, Tykocinski M, Stidham K et al (2005) Cochleostomy site: implications for electrode placement and hearingbpreservation.

[6] Eshraghi AA, Yang NW, Balkany TJ (2003) Comparative study of cochlear damage with three perimodiolar electrode designs.

[7] Roland PS, WrightCG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma.

[8] Stöver T, Issing P, Graurock G et al (2005) Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones.

[9] Wardrop P, Whinney D, Rebscher SJ et al (2003) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I. Comparison of Nucleus banded and Nucleus Contour electrodes.

[10] Wardrop P,Whinney D, Rebscher SJ et al (2005) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II. Comparison of Spiral Clarion and HiFocus II electrodes.

[11] Hussong A, Rau T, Ortmaier T et al (2010) An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery.

Questions & Comments