

Robotically Assisted Cochlear Imaging and Access

Team 1

- Members: Ehsan Azimi, Berk Gonenc
- Mentors: R. Taylor, I. Iordachita, J. Kang
- Clinical Mentors: J. Niparko, W. Chien

Motivation

Background and Specific Aims

- Ear Anatomy and Implant Structure
- Standard Cochlear Implant Surgery
- Optical Coherence Tomography
- Steady-hand Robot

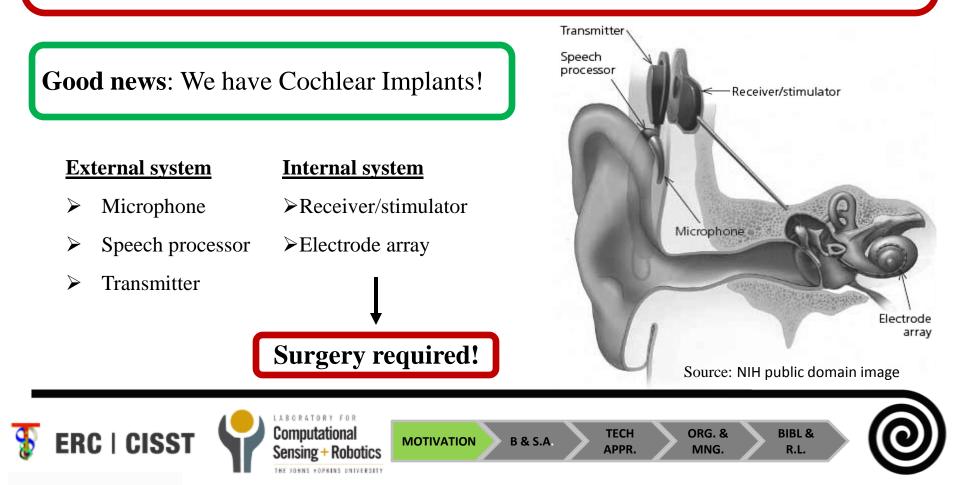
Fechnical Approach

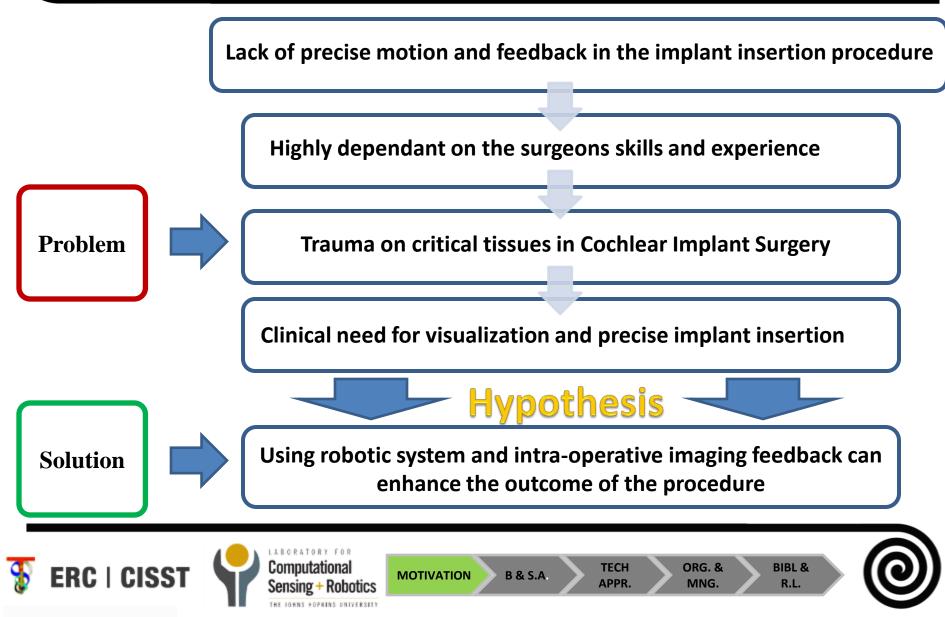
Organization and Management

- Deliverables
- Validation
- Dependencies
- Timeline
- Management Plan
- Bibliography and Reading List

ORG. & MNG.

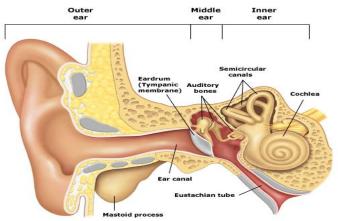
TECH

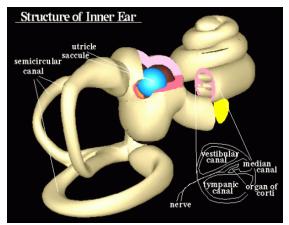

APPR.



3/18

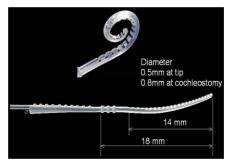
Bad news: More than 36 million Americans have some degree of hearing loss. An estimated 3/1,000 children in the US may be born with hearing loss. Hearing loss can leave you feeling isolated from friends and family.

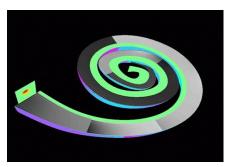




Background & Specific Aims

Ear Anatomy (courtesy Adams)




Structure of the inner ear (caltech.edu)

ERC | CISST

Anatomy of the inner ear (1940 knowledge builders)

Implant Structure Cochlea anatomy (caltech.edu)

Overview of Standard Cochlear Implant Surgery

OR setup during the Cochlear Implant procedure

Structure of a cochlear implant



MOTIVATION

Video of the surgery by Dr. Sergio Sztern (CIGNO)

Background & Specific Aims

What is happening inside?

- Advance Off-Stylet insertion technique is used.
- \triangleright Flexible curved electrode array (1) mm diameter) is advanced into 15-20 mm long channel.
- The whole electrode is inserted until the white marker reaches cochleostomy site.
- \triangleright The stylet is held stationary, electrode is deployed off the stylet to give the electrode its naturally curved shape.
- \blacktriangleright After the ribs reach the cochleostomy site, the stylet is removed.

Timing of these steps is very critical!

a b Electrode Stylet Source: Thomas S. Rau et al, 2009

ORG. &

MNG.

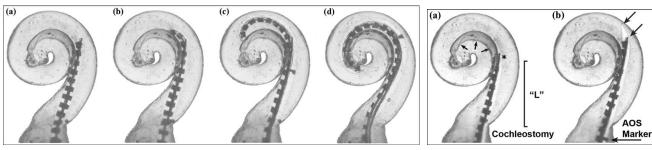
TECH

APPR.

B & S.A

MOTIVATION

BIBL & R.L.

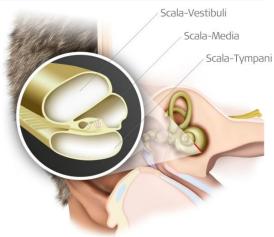


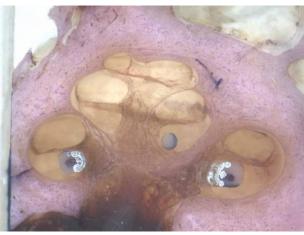
7/18

Background & Specific Aims

- During insertion, the electrode should travel in Scala-Tympani \geq with no damage to the basilar membrane.
- \blacktriangleright For this, there is a critical location to begin off-stylet technique.

Source: Stephen J. Rebscher et al, 2008


 \blacktriangleright Electrodes should be located as close to modiolus as possible (perimodiolar position).

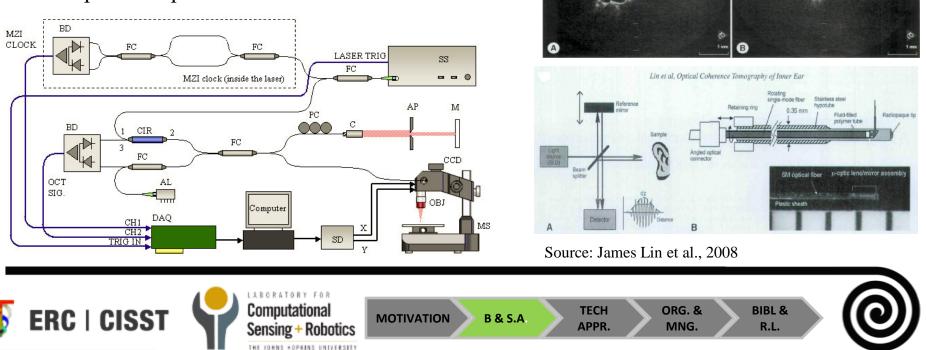

ERC | CISST

Source: www.utsouthwestern.edu

Source: http://www.medel.com

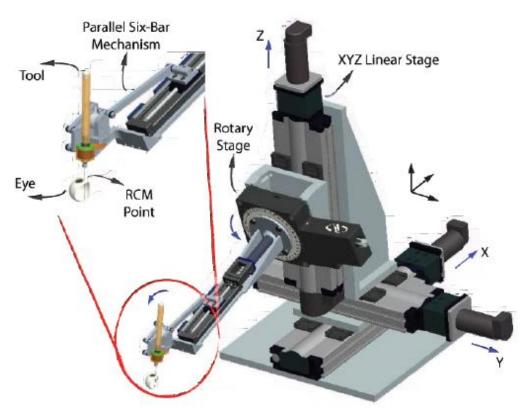
Source: professionals.cochlearamericas.com

8/18


Computational

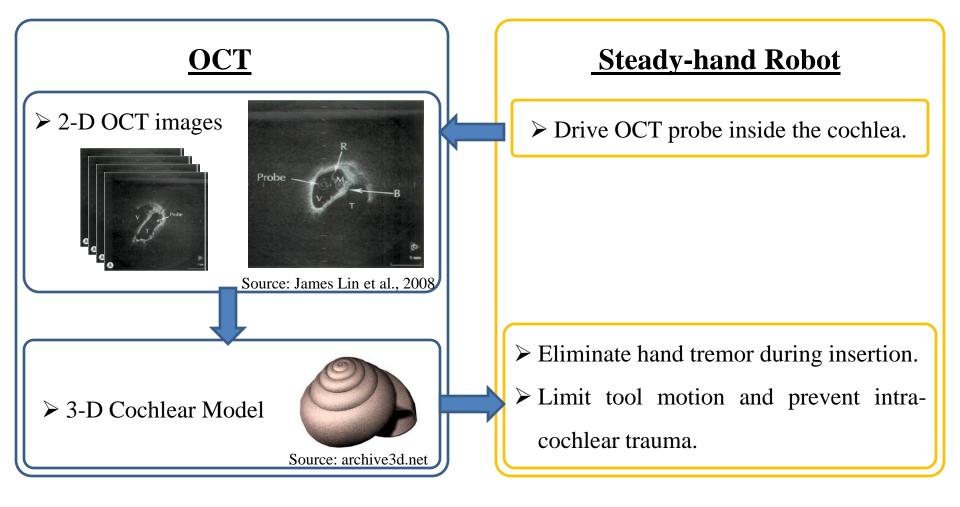
MOTIVATION **B & S.A** TECH APPR. ORG. & **BIBL** & MNG. R.L.

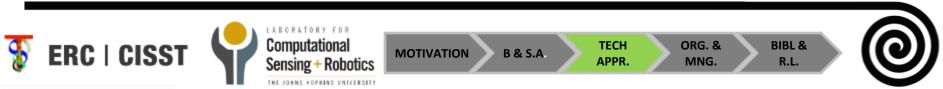
Optical Coherence Tomography (OCT)


- \triangleright Up to 25 times higher resolution than anything used in clinical medicine
- Small Catethers Suitable candidate for intraoperative procedures (Fiber Optics)
- Noninvasive imaging modality
- ➢ Realtime display
- ➢ Compact and portable

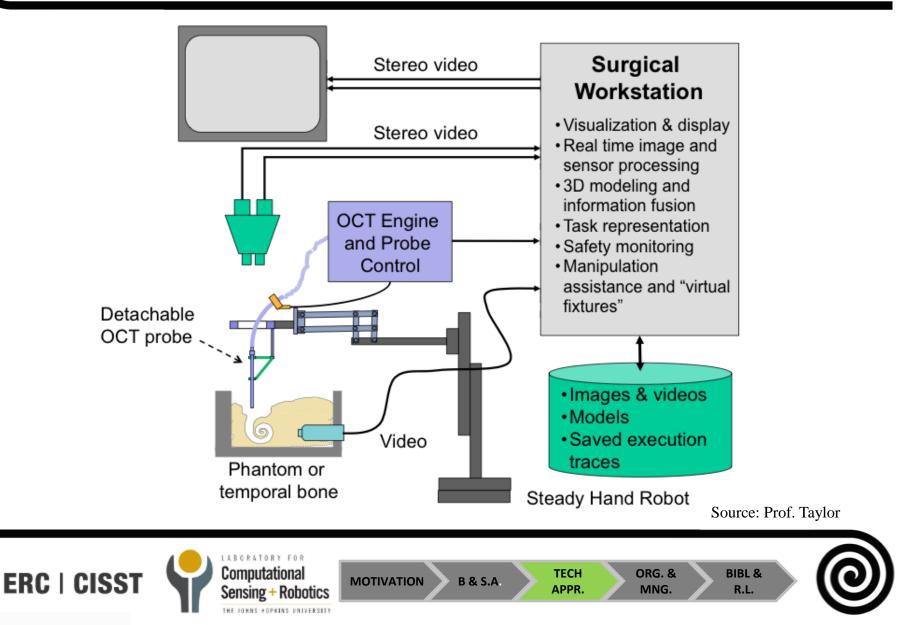
Probe

Steady-hand Robot




- Designed for sub-mm manipulation tasks.
- Provides smooth, tremor-free, precise position control.
- Combines manipulative transparency and immediacy of hand-held tools with precision and sensitivity of a machine.
- Successful tests and improvements in retinal microsurgery.

Source: Uneri et al, 2010



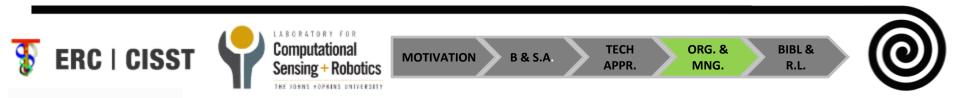
Technical Approach

Organization & Management

	Deliverables			
Minimal	1. OCT-adapter design and fabrication for the steady-hand robot			
	2. Tooling design and fabrication for electrode insertion with the steady-hand robot			
	3. Procedure workflow for robotically assisted implantation			
Expected	1. Software for controlling the motion of OCT probe inside the cochlear canal			
	2. 3-D reconstruction software for building cochlear canal model from OCT images			
	3. OCT scanning videos and images			
	4. Implant insertion videos and images			
Maximal	1. OCT system demonstration			
	2. Implant insertion demonstration			

BIBL &

R.L.



Validation

> Most evaluation experiments will be performed on our artificial cochlea phantom.

- > The surgeons will be asked to evaluate the robotically assisted procedure based on:
 - **1.** Intracochlear damage (number of hits and forces on Scala-Tympani walls.
 - 2. Operation time
 - 3. Final electrode position.

Organization & Management

	Dependency	Plan/Source	<u>Status/Comments</u>						
1	OCT imaging system	Schedule with Dr. Kang's lab	Scheduled						
2	CI procedure observation	Schedule with Dr. Niparko's assistant	Done						
3	Engineering and clinical mentors	Schedule weekly meeting with the team	Scheduled						
4	Advance Electrode Arrays	Cochlear	We have 3; will probably need more eventually						
5	Biohazard and blood pathogen training Register/ take online class		Done/In progress						
6	Temporal bones	Ask Drs. Niparko & Chien	Received						
7	Cochlear phantom with video capture capability	Buy/build/borrow	Building will require a video camera (\$\$)						
8	CISST libraries	Training	Training acquired						
9	3D anatomical model of the inner ear with relevant structures Order from Amazon		Received						

MOTIVATION B & S.A.

TECH

APPR.

Organization & Management

<u>Period</u>	Task	2/13	2/20	2/27	3/05	3/12	3/19	3/26	4/02	4/09	4/16	4/23	4/30	5/07
Planning Period	Literature Survey													
	OR visit													
	Detailed Problem Definition and Conceptual Designs													
	Evaluation of Concepts													
	Project Proposal Presentation													
Design and Fabrication Period	Design of OCT Adapter (CAD Model) and Ordering Materials													
	Design of Implant Manipulating Adapter (CAD Model) and Ordering Materials						×							
	Development of OCT Control Software						Break							
	Development of 3-D Reconstruction Software													
	Fabrication of the First Prototype						pring							
OCT Testing	OCT Tests on Temporal Bone Model						SI							
	Modifications and Debugging													
Period	OCT System Demonstration													
Robot Testing Period	Electrode Insertion Tests on Temporal Bone Model													
	Modifications and Debugging													
	Electrode Insertion Demonstration													
Final Presentation														

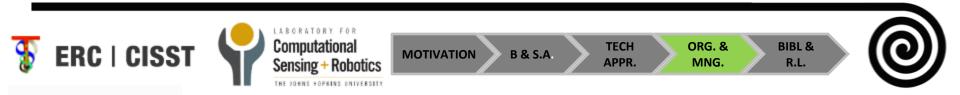
MOTIVATION B & S.A.

TECH

APPR.

BIBL & R.L.

16/18



Management Plan

1. Weekly meeting with mentors for establishing goals under engineering and medical experience.

2. Weekly team meeting on Wednesdays and Saturdays for sharing updates, discussion, further planning, and revising plans.

3. We are planning to spend a total of 50 hrs per week on this project.

Bibliography & Reading List

[1] Lenarz T, Stöver T, Buechner A et al (2006) Temporal bone results and hearing preservation with a new straight electrode.

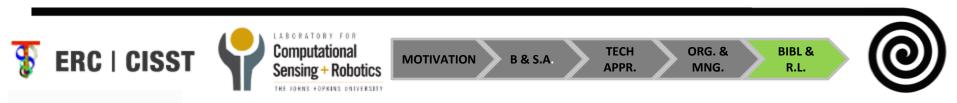
[2] Roland P, GstöttnerW, AdunkaO (2005) Method for hearing preservation in cochlear implant surgery.

[3] AdunkaOF, Pillsbury HC, Kiefer J (2006) Combining perimodiolar electrode placement and atraumatic insertion properties in cochlear implantation—fact or fantasy?

[4] Adunka OF, Radeloff A, Gstoettner WK et al (2007) Scala tympani cochleostomy. II. Topography and histology.

[5] Briggs RJS, Tykocinski M, Stidham K et al (2005) Cochleostomy site: implications for electrode placement and hearingbpreservation.

[6] Eshraghi AA, Yang NW, Balkany TJ (2003) Comparative study of cochlear damage with three perimodiolar electrode designs.


[7] Roland PS, WrightCG (2006) Surgical aspects of cochlear implantation: mechanisms of insertional trauma.

[8] Stöver T, Issing P, Graurock G et al (2005) Evaluation of the advance off-stylet insertion technique and the cochlear insertion tool in temporal bones.

[9] Wardrop P, Whinney D, Rebscher SJ et al (2003) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I. Comparison of Nucleus banded and Nucleus Contour electrodes.

[10] Wardrop P,Whinney D, Rebscher SJ et al (2005) A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II. Comparison of Spiral Clarion and HiFocus II electrodes.

[11] Hussong A, Rau T, Ortmaier T et al (2010) An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery.

Questions & Comments