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Introduction

This is a critical review of the paper “An Airway Tree-shape Model for Geodesic Airway
Branch Labeling” written by Feragen et. al. [1]. This paper presents a method for airway branch
labeling by computing geodesic deformations between mathematical airway tree-shape models.
The authors claim that the labeling results are good taking the large variation in the training
set into account. Even though some important points in their experimental validation are not
clarified, the proposed method brings novelty to the field with a geodesic deformation which
simultaneously considers both airway topology and branch geometry.

Relevance

The technical approach of my project includes the computation of average coronary tree from
a population by computing geodesic deformations based on an unique tree-shape metric called
Quotient Euclidean Distance (QED). The QED metric was first proposed by the same authors
of the reviewed paper [2] who then applied this metric to airway branch labeling. I selected
this paper for my review because it assesses the accuracy of QED geodesic deformation with an
application to tree matching and it explains this metric to a broader community thoroughly.

Paper Summary

The reviewed paper proposes a novel method for the automated labeling of an unseen airway
tree by first finding its correspondence to labeled airway trees in a training set and then assigning
a label to each branch of the unseen tree based on a majority vote scheme. It establishes the
branch correspondence between two airway trees by a unique geodesic deformation which is the
main contribution of the paper. The authors begin their paper by motivating the importance and
difficulty of the problem which is followed by related works. They then explain the tree-shape
space including a unique geodesic metric and its application to airway trees. The paper is con-
cluded after presenting and discussing the results.

Finding the correspondence between airway trees in a population is a necessary task to moni-
tor progression and variability of diseases at specific anatomical locations. Airway centerlines ex-
tracted from Computed Tomography (CT) scans are commonly used for airway tree comparison
and branch labeling. However, this comparison is difficult due to spurious or missing branches
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Figure 1: a) Representation of non-binary tree-shapes. Tree-shape is shown on left. Its corre-
sponding binary tree with zero-attributed edges is shown on the right. b) Representation of the
same tree-shape in (a) with a different binary tree.

and more importantly anatomical variation. This problem was previously addressed in the lit-
erature by methods that use one of the topology or branch geometry features of airway trees.
These methods include maximal clique computation on association graphs that only considers
topology and has NP hard complexity, implicit recursive labeling during segmentation that is
prone to topological changes and path matching that can only label paths and therefore looses
topological information. On the other hand, different than these previous methods, the reviewed
paper proposes a solution to this problem by computing continuous and morphological geodesic
deformations between trees using both topology and branch shape features of airway trees.

The tree-shape space and geodesic metric used in this paper were previously defined by the
authors [2]. In their work, any tree-shape corresponds to a point in the Euclidean space and is
represented as a pair (T, f) of a ordered binary tree T = (E, r) with edges E and a root point
r, and branch attributes f : E → R3n where each edge E is mapped with n landmark points
sampled along the matching branch geometry. The binary tree accounts for the tree-shape topol-
ogy where non-binary tree-shapes can be represented via binary trees by collapsing their zero-
attributed edges, Figure 1a. The Euclidean representation of the tree-shape space then becomes
X =

∏
e∈E R3n. In order to represent natural and continuous deformations between two trees

with different topologies, the author defines the quotient space X̃ where different representations
of the same tree-shape are identified. In their definition, two tree representations are identical if
the attributed trees are exactly the same after collapsing zero-attributed edges, Figure 1b. In other
words, the quotient space X̃ glues together all points in X that correspond to the same tree-shape.

They call the Euclidean distance in X̃ as Quotient Euclidean Distance (QED). In this metric,
the distance between two different trees is computed from the Euclidean norm of the difference
between their points whereas the distance between identical trees is set to zero. The authors show
that the geodesic path in this space is a sequence of Euclidean lines which are cut and concate-
nated after internal topological transitions, Figure 2a. According to the author, the QED based
geodesic is suitable for tree registration and also statistics because it is well-behaved and proven
to be unique in their previous work [2].
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Figure 2: (a) QED path as concatenated Euclidean lines. (b) Missing secondary branch of the
left tree causes the main branch of the right tree partially labeled. (c) My implementation using
branch partitioning. The main branch of the right tree is fully labeled.

Since airways in this problem are 3D tree-shapes with unknown branch orders, the authors
consider all possible branch orderings for the geodesic deformation which, however, increases
the computational cost. They overcome this problem by fixing certain identified branches such as
right main bronchus (RMB) and left main bronchus (LMB), and perform branch labeling in each
of the lobar subtrees separately. Branch labeling is done by propagating labels along the geodesic
path between a labeled and unlabeled tree. Their implementation for geodesic deformation lists
all possible paths with internal topological changes and chooses the one with minimum distance
cost. In order to reduce the complexity of the algorithm, the authors put a upper bound on the
total number of internal topological changes along the geodesic path. However, true geodesics
between trees with large variations can not be obtained with a limited number of topological
changes. The authors address this problem to improve robustness by first labeling a tree from
multiple trees in the training set and choosing the branch label has the majority vote.

For the experiments, they used airway trees with large topological variation which were ex-
tracted from EXACT’09 segmentation challenge datasets and labeled by a trained image analyst.
Small noisy branches were pruned and the remaining branches were sampled with 6 landmark
points where the landmark points were translated by aligning the first landmark point with the
origin so that large branch differences in low generation do not affect the extent of their subtrees.
Each airway tree was normalized by the length of LMB branch which was present and measur-
able in the training set. The trachea was left out and the fixed branches were detected based on
their orientation and extent of their subtrees. The authors only considered branches down to 6-7
generation for labeling. Geodesic deformations were computed in the five lobar subtrees sepa-
rately by only allowing for one internal topological transition. Each airway tree was matched to
entire training set in a leave-one-out fashion and labels were assigned to each branch based on a
voting scheme where branch labels with less than 55% consensus or less than 4 votes were not
included in the results. Average labeling success rate was 83%.

The authors discuss that 83% success rate was high taking the large variation in the training
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set into account and support their claim by presenting a plot showing the number of detected
branches for each case. They also discuss that the comparison to other methods (with 97%,90%
success rates) was not possible because of different datasets used.

Critique

The authors state that when the large structural differences between the airway trees in the
training set are taken into account, their success rate 83% can be considered high and the large
variance in their results is expected. They present a plot showing the number of detected branches
in each case. However, the authors do their experiments only down to 6th generation. So, it would
be very supportive to show a plot for detected branches down to 6th generation in order to realize
the large variation in the part of the airway trees which authors did actually run their method on.

In their problem statement, the authors emphasize that airway trees may have missing branches
that can cause topological variations. However, they discard this important point while explain-
ing their method. Their definition of “same tree-shape” does not account for missing branches.

Since the LMB branch was used to normalize each airway tree in the population, the authors
should have commented on the variability of the LMB branch relative to the overall size of air-
way tree. In other words, is the size of LMB branch always linearly proportional to the size of
airway tree? For example, a short LMB branch in a large airway tree should not be used for the
normalization if a same sized or longer LMB branch exists in a smaller airway tree.

The authors showed the missing upper lobes of the airway subtree as a reason for very low
success rate in CASE39. However, in their experiments, branches in each of the lobes were
labeled separately. So, why does the missing upper lobes affect the labeling accuracy of other
lobes? It is also not clear whether the fixed branches were included in the results or not, i.e., from
correctly labeled branches, how many of them are fixed branches? As the main contribution of
this paper is the novel unique geodesic metric, another table that only reports the results from
each lobe could have been included to see the accuracy of labeling via geodesic deformation.

In addition, even though the authors discuss about the computational complexity of their
QED method, they should have provided with some number on the runtime, i.e., does it take
hours, days, weeks on a standard PC for allowing one, two, ... internal topological transition?
They claim that this method is applicable to vascular structures, however only one internal topo-
logical change may not be enough to deform one vascular tree to another.

Finally, the authors do not compare their method to tree edit distance method (TED) which
was previously applied to cerebral vessel matching [3]. The authors should have commented on
possible differences in the results if TED was applied to the same problem. Because TED metric
can be computed efficiently using dynamic programming approaches and would allow for more
than one topological changes along the geodesic path.
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In spite of the points that are mentioned above, the presented method is novel in the sense
that it uses a geodesic tree metric that can account for both topology and branch geometry. The
geodesic computed by this metric is also unique which makes it suitable for statistical analysis
such as computing mean of a tree set and classifying trees. And the idea of determining branch
labels through majority vote is simple but effective when there is structural noise in the training
set. The presented method also allows for imposing additional continuous attributes other than
only branch geometry such as airway radii. Finally, this paper gives a thorough explanation of
the underlying novel tree-shape space to a broader community.

Conclusion

The reviewed paper presents a novel method for automated labeling of airway branches.
While the cases with missing branches and some validation aspects are not explained thoroughly,
this method is an application of an unique geodesic metric which is a big contribution to the field.
This paper could have been improved by several means. First, the authors could have demon-
strated their method on an example where a branch is missing, Figure 2b. One way of dealing
with missing branches could be to further divide airway branches into partitions and map them
onto consecutive edges on the binary tree, Figure 2c. Second, success rates could have been in-
cluded in the results table with and without counting fixed branches, and the method for detecting
fixed branches could have been explained in more detail. Another improvement could be to sup-
port their statement of high variation in topology by showing a plot for detected branches only
down to 6th generation instead of the whole airway tree. Finally, they could have explained what
makes this method different than TED for branch labeling since TED is a well known method to
compute geodesic paths between trees and was previously used for branch labeling.

In my project, there is a large variation in coronary tree topology due to the anatomical vari-
ability. This large variation as well as imaging related problems may cause some of the tiny but
considerably long branches be missing in the data. Therefore, my QED metric implementation
should be able to account for missing branches which will increase the computational time. How-
ever, the aligned coronary trees in my project lie on a 2D manifold and the brances are ordered
unlike the airway problem in this reviewed paper. So, I can make use of this prior informa-
tion about branch orderings to compensate for the computational overhead of handling missing
branches. In addition, I can use the same idea of fixing branches and computing geodesic defor-
mations in certain subtrees, e.g., by fixing left anterior descending (LAD) and circumflex (CX)
branches and apply QED to the extent of their subtrees separately because LAD and CX subtrees
exist in the entire training set. Similar to their method, I can consider pruning small branches and
run the algorithm down to a certain tree depth.

One of the tasks of my project is to apply TED metric for coronary tree matching. As a
future work after my project, I can apply my QED implementation to coronary tree matching and
compare it to the TED results.
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