Prior Models on Coronary Arteries

Computer Integrated Surgery II, Spring 2012

Mehmet Akif Gulsun^{1,2}, under the supervision of Gareth Funka-Lea¹

¹Siemens Corporate Research, Princeton, NJ, USA, ²The Johns Hopkins University, Baltimore, MD, USA

INTRODUCTION

Coronary arteries have large topological variations in their anatomy.

- Prior models that can capture these variations are needed > to support coronary detection in medical images
- > for statistical analysis

Coronary prior models from

> computing their distribution on territories

building tree-shape models and geodesic metrics that can account for topology

Statistics On Territories

Average density map from vessel distance maps

- Vessel distance map computation
 - > construct a discrete graph on the canonical surface
 - \succ initialize distance map by mapping centerline points
 - > run Dijkstra's algorithm to obtain final distance map
- Density map from Gaussian weighting of distance map

Tree-Shape Geodesics via Tree Edit Distance

Best known method to compute geodesics between tree-shapes

• Match two trees with add, remove and deform edit operations

Extended definition of identical tree-shapes for handling missing branches

• QED metric is non-negative > implementation with Dijkstra's algorithm Approximation of mean tree using Birkhoff Shortening

Traditional statistical methods are well suited for shapes sharing a common topology which is not the case for coronaries.

PROBLEM

Coronary centerline detection is a necessary task

Centerlines in CTA

Advanced Visualization Planning

Common difficulties for detection

irregular topology of anatomy

- > pathologies
- > imaging artifacts
- Besides detection, statistical tools are also needed to
- > compute modes of variation in coronary shapes
- > correlate coronary artery diseases with coronary anatomy

register coronary trees

Application to coronaries using 50 hand annotated data Geodesic deformations are applied to LAD and CX subtrees separately

Implementation with bidirectional Dijkstra's minimum cost path

• Current methods do not address the large variation in coronary topology and geometry together.

METHODS

Alignment of Coronary Centerlines

Input Data

Defined Coordinate System Projected Centerlines

propagation > concurrent Bypassed zero edae from source and target treeshapes

Bidirectional deformation

> until trees from two fronts with same topology collide

Tree-Shape Geodesics via Quotient Euclidean Distance

A unique tree-shape geodesic metric suitable for mean computation

 Different representations of same tree-shape are identified in Quotient Space

L₂ norm

f:branch attribute, n: landmarks $-f: E \to \mathbb{R}^{3n}$

/lerged

edges

consecutive

, . . .

Tree-shape representation

Topology Matching Algorithm

Paths in Quotient Space

Coronary Tree Matching

FUTURE WORK

- Evaluation of tree matching on labeled trees
- Correlation between average tree and specific patient data
- Running the algorithm in higher depth trees Integration into detection algorithms

LESSONS LEARNED

Vascular structures have complex topology and traditional methods cannot be easily applied Learned a new way of building statistical models A good design and implementation are important for computational efficiency

Acknowledgements: Thanks to Dr. Yefeng Zheng from Siemens Corporation for his time on providing me with the annotated datasets