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RELEVANCE, INTENT & IMPORTANCE 

Relevance 

The selection of this particular article can be justified for numerous reasons. Firstly, the work 

represents a cutting-edge contribution to 3D/3D pose estimation. Not only is this a preponderant 

topic in the field of point registration, but it is also a problem strikingly similar to the one that must 

be solved in the current project. 1 

Secondly, the key result of the work is a variation on the ECM algorithm. A previously coded 

implementation of the ECM algorithm is employed in the current project. The dissection and analysis 

of this article has afforded invaluable insight into the theory and practice of the application of EM-

like algorithms. The deliverables of the current project depend on a thorough understanding of the 

inner workings of methods based on those presented in this article. 

Thirdly, the methods outlined in the article and those used in the current project have the following 

implementation parallels: 

1. The use of an ECM approach to performing maximum-likelihood estimation (MLE). 

2. The use of a Gaussian Mixture Model (GMM). 

3. The use of a uniform distribution to handle outliers. 

NOTE: The authors proposed both a method for rigid point registration and articulated point 

registration. Being that the latter makes many calls to the former, and also given that the primary 

interest in this work in the context of the current project lies in the rigid registration aspect, less 

attention is given to the articulated algorithm details and figures (for example, Figure 3 on page 595 

of the original article is not elaborated). Also, most of the equations in this report consist of 

mathematical steps left out by the authors but which have been provided here for the sake of 

clarity. Any diagrams (particularly flow charts) contained in this report which are not credited to the 

original source are the work of the author of this report. 

Intent 

In this investigation, the authors cast the point registration problem into and MLE framework with 

missing data. The intent of the authors was fourfold: 

1. To formally derive a novel, ECM-based algorithm for rigid point registration. 

2. To elaborate on the practical considerations of the implementation of the novel algorithm. 

3. To extend the application of the novel algorithm from rigid point registration to articulated point 

registration. 

                                                           
1
 http://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=courses:446:2012:446-2012-03:project03 

http://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=courses:446:2012:446-2012-03:project03
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4. To compare the performance of the novel algorithm to that of the leading alternative algorithm. 

Importance 

The authors claim that an ECM-based point registration (ECMPR) algorithm is of value primarily 

because it is 1) more broadly applicable than other EM-like point registration methods and 2) does 

not disregard other model parameters when maximizing over the registration parameters. That is to 

say, the maximization of the registration is conditional on the other model parameters.  

Moreover, the authors demonstrate that their point registration algorithm is robust to outliers. The 

technique used by the authors for the rejection of outliers has advantages over existing methods, 

including the tendency to avoid becoming trapped at local minima (thanks to the EM structure of the 

algorithm) and efficiency. 

By all accounts, the authors succeeded in their undertaking. However, certain shortcomings do exist, 

and these will be addressed near the close of this report. What follows is an overview of the 

technical approach chosen by the authors, the experiments designed by the authors, the results of 

those experiments, and the conclusions that they authors have drawn from them. 

TECHNICAL SUMMARY 
This technical summary will begin by providing the reader with details of the mathematical notation 

used in the article. It will continue by defining the problem at hand, and it will then outline the rigid 

point registration algorithm (named ECMPR) proffered by the authors. Next, the report will 

“backtrack” through the key steps of the formal derivation of the ECMPR-Rigid algorithm. Finally, the 

technical summary will describe the extension of the ECMPR-Rigid algorithm to articulated 

registration (ECMPR-Articulated). Justifications for the manipulations of various equations which 

may not have been clearly stated by the authors will also be provided. 

Notation 

Although the mathematical notation used in the article is explicitly defined by the authors, a more 

thorough table of mathematical definitions is desirable for a “first-pass” reading. Such a guide is 

presented on the final page of this document. The reader may wish to detach that page for 

reference before continuing. 

Problem Statement 

Point Registration 

The point registration (PR) problem seeks to determine the best possible alignment between two 

sets of points. It consists of two main steps. Firstly, the point-to-point correspondences must be 

obtained. Secondly, the transformation mapping one set of points onto the other set of points must 

be estimated. In the rigid PR case, this transformation consists of two parts: a component of rotation 

  and a component of translation  . The authors utilize an expectation-maximization (EM) 

framework as the jumping point for their work. 

When the PR problem is cast into the EM framework, a maximization criterion must be defined from 

which the optimal model parameters can be estimated. That is, an objective function must be 

chosen, and it must be maximized (or minimized, as the case may be) over the model parameters. 

Thus, it can be called a maximum-likelihood estimator. The optimal parameters are those which take 

the maximum-likelihood estimator to its extreme value. However, the fact that data is missing from 



EN.600.646 Seminar Article Report VAN MAELE 

Page 3 of 30 
 

the problem (specifically, the correspondences between points) complicates maximization. There 

are several approaches to handling such hidden information problems (for example, fitting a Hidden 

Markov Models). The authors have chosen to fit a Gaussian mixture model (GMM) to deal with 

hidden information. 

Gaussian Mixture Models 

In this investigation, the authors fit a GMM to the observed data   by assuming that the 

transformed model points, denoted  (    ), coincide with the means of a mixture of Gaussian 

densities. The observed data points    are assumed to be random variables, or observations drawn 

from these distributions. The probability that    actually is such an observation is computable. An 

observed point very distant from a model point for whose Gaussian density it is being considered a 

putative random variable will have a weak probability of having been drawn from that density. This 

is clear later when the posterior probabilities and model parameters are shown to have distance 

terms in them. Once the maximum-likelihood estimator is defined and expanded, it will become 

clear that these probabilities (as well as others) will have to be defined in order to describe the 

ECMPR-Rigid algorithm. The full algorithm is summarized now for reference, and the steps taken to 

derive the algorithm will then be described. 

,  

The ECMPR-Rigid Algorithm 

1. Initialization: Set      and     ⃗⃗ . Choose the initial covariance matrices   
 
      . 

2. E-step: Evaluate the posteriors    
 

, the virtual observation   
 

, and its weight   
 

 using the 

expressions provided below with the current parameters   ,   , and   
 

. 

3. CM-Steps: 
a. Use semidefinite positive (SDP) relaxation to estimate the new rotation matrix      by 

minimization of the expression provided below for    with    
 

 and   
 
      . 

b. Estimate the new translation vector      using the expression provided below for    with 

the new rotation matrix      and the current posteriors    
 

 and the current covariances 

  
 
      . 

c. Estimate the new covariances   
   

       using the expressions provided below with 

the current posteriors    
 

, the new rotation matrix     , and the new translation vector   . 

4. Convergence: Compare the new and current rotation matrices,    and     . If ‖   
    ‖    (where   is a threshold), then go to the Classification step. 

5. Classification: Assign each observation to a model point (inlier) or to the uniform class (outlier) 
based on the maximum a posteriori (MAP) principle:  

         
 

    
 

 

That is, let the index of the model point    corresponding to the observed data point    be 

equal to the value of   which maximizes the value of the posterior,    
 

. 

 

 

The ECMPR-Rigid algorithm depends on the iterated computation of various quantities, including the 

model parameters   {                }, the inlier and outlier posteriors, and more. The 

highlights of the formal derivations of these key quantities will now be reviewed, beginning with the 

posterior probabilities. 
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Posterior Probabilities (         ) 

The posteriors           are arguably the most difficult quantities to accept in this work. They 

are defined as the likelihood of the assignment of observed data point    to model point    given 

the observation of   . This treatment will attempt to demystify both the derivation and significance 

of these quantities. 

Bayes’ Rule 

The derivation of the posterior probabilities begins with Bayes’ rule. In general, it is stated as 

 (   | )  
 ( |   )   (   )

 ( )   
           

 

Where  (   | ) is the probability that random variable   takes on the value   given condition  . 

In plain English, this is interpreted as 

          
                

                      
           

 

Note that the marginal likelihood is simply a normalizing constant. That is, it ensures that the sum of 

the posterior over all possible values of   is equal to 1. To adapt Bayes’ rule to the language used in 

the article, the formula is rewritten as 

 (    |  )  
 (  |    )   (    )

 (  )   

    

           

 

Checking the correspondences among the two instantiations of Bayes’ rule will show that the two 

formulas are completely analogous.  

Priors 

Note that the prior in this case is  (    ). The authors state that in the EM framework, the priors 

are treated as model parameters. To parameterize the priors, they envision a spherical volume 

about each model point    which constitutes a fraction of the entire 3D working volume  . The 

priors are labeled      (    ) and are parameterized according to 

           (    )  {
    

 

 
         

     
    

 
         

   
                          

 

where          is the volume of said sphere of radius  , centered at a model point   . It is 

assumed that     . In designing this parameterization of the priors, the authors are providing 

prior information to the model about the missing information. In other words, if a point is an inlier 

(which is true if the index of the matching model point is within [   ]), then  (    ) will be 
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believed to be an inlier with prior certainty 
 

 
. On the other hand, if the index of the matching model 

point is    , then  (    ) will be believed to be an outlier with a prior certainty of   . 

Now that the prior component of Bayes’ rule has been defined, the likelihood and the marginal 

likelihood remain. 

Likelihood 

Recall that the likelihood component of the posterior is written as  (  |    ). In the language of 

the article, this quantity is the likelihood of an observation point   , given that the missing 

information    suggests    corresponds to the model point   . The choice of the distribution from 

which to draw the likelihood is somewhat of an art form. The authors seek to fit a GMM to the 

observed data points such that the centers of the Gaussian densities lie on the transformed model 

points,  (    )     . Therefore, the likelihood values will be drawn from a Gaussian 

distribution. 

In general the Gaussian distribution may be written as 

 (      )  
 

 √  
   [ 

 

 
(
   

 
)
 

]
   

       (        )             

 

where   is the mean and    is the variance. However, in this work, the distribution is multivariate. 

Therefore, the applicable formula is 

      (   )   
                                   

 

where   is the vector of means and   is the covariance matrix. Note that the covariance matrix 

generalizes the concept of variance to three dimensions. The article does not explicitly write the 

formula for the 3-dimensional Gaussian distribution. However, it is supplied here for reference: 

  (        )  [(  )  ⁄ | |  ⁄ ]
  

   [ 
 

 
(   )    (   )] 

where | | is the determinant of the covariance matrix. Thus, the likelihoods can be written as 

             (  |    )   (  |  (    )   )           

Note that the likelihoods have only been found for      . The authors chose to draw the 

likelihoods for       from a uniform distribution, which may generally be written as 

 (   )  {
 

   
       [   ]

              
                    

 

However, the authors have made a notational error. They write 

 (  |   ) 
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when they actually mean 

 (  |   ) 

In any case, the likelihood of an observation given its assignment to the outlier cluster is drawn from 

the uniform distribution over the entire 3D working volume. Thus, we have 

             (  |      )   (  |   )  
 

 
 

All that remains is the marginal likelihood. 

Marginal Likelihood 

Recall that the marginal likelihood is the denominator of the posterior. As the normalization factor, 

it consists of the sum of all possible values that the numerator can take on. Remember that  

                     (  ) 

 (  )  ∑ (  |    )

   

   

 (    ) 

 

 (  )  ∑ (  |    )

   

   

   

The authors report this equation as the complete expression for the marginal likelihood. 

 

Final Result (   
 

) 

Substitution of these components into Bayes’ rule gives 

          
                

                   
 

    
 (  |  (    )   )  

∑  (  |  (    )   )
   
     

 

The numerator and the denominator differ only in the presence of the summation in the 

denominator. Expanding the  ( ) function notation gives 

    
[(  )  ⁄ |  |

  ⁄ ]
  

   [ 
 
 (    (    ))

 
  

  (    (    ))]   

∑ [(  )  ⁄ |  |
  ⁄ ]     [ 

 
 (    (    ))

 
  

  (    (    ))]   
     

 

Canceling the constants gives 
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|  |

   ⁄    [ 
 
 
(    (    ))

 
  

  (    (    ))]   

∑ |  |
   ⁄    [ 

 
 
(    (    ))

 
  

  (    (    ))]   
     

 

The authors give an expression for the quantity known as the Mahalanobis distance, 

‖   ‖ 
  (   )    (   ) 

which allows the above to be simplified. Rewritten, the posterior is 

    
|  |

   ⁄    ( 
 
 ‖    (    )‖

  

 
)  

∑ |  |
   ⁄    ( 

 
 ‖    (    )‖

  

 
)   

     

 

Substituting for    and    gives 

 

Horaud et al., Equation (12), page 591 

where     accounts for outliers and is equal to 
  

   √  
. 

All that is needed is       . This is easily defined as one minus the total posterior probability of an 

assignment to an inlier, or  

 

Horaud et al., Equation (14), page 591 

Next, the procedure for obtaining the maximum-likelihood estimator of the model parameters is 

described. 

Maximum-Likelihood Estimator 

In the EM framework, one seeks to find by iteration the maximum-likelihood estimate of the model 

parameters. That is, one searches for the assignment of the parameter set   {         } which 

maximizes the value of some objective function, representing a point-to-point alignment no worse 

than the initial values of the parameter set. Ordinarily, the observed-data log-likelihood would serve 

as the objective function to maximize, written as 

 (         | )      (           ) 

However, because this is a missing information problem (the correspondences between observed 

data and model points are unknown), maximization over this function is not reasonable. EM 

methods can cope with this difficulty by assigning the missing data to a set of hidden random 

𝛼𝑗𝑖  
|𝚺𝑖|

   ⁄    ( 
 
 ‖𝒀𝑗  𝝁(𝑿𝑖 𝚯)‖

Σ𝑖

 
)

∑ |𝚺𝑖|
   ⁄    ( 

 
 ‖𝒀𝑗  𝝁(𝑿𝑖 𝚯)‖

Σ𝑘

 
)𝑛  

𝑘     𝐷

 

𝛼𝑗 𝑛     ∑𝛼𝑗𝑖

𝑛

𝑖  
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variables. In this case, the authors use the notation   {  }     
 to represent these hidden 

variables. These were seen above, and it was stated that    assigns the data point    to the model 

point    (or to the outlier cluster). The authors use a suggestion from Dempster et al. to replace   

with the expected complete-data log-likelihood conditioned by the observed data. 

To denote the expected complete-data log-likelihood conditioned by the observed data, one writes 

 ( |   )    [    (             ) |  ] 

Note the appearance of both the   [ ] function and the condition on  , as well as the inclusion of   

(which indicates that the data is complete, consisting of both observed and missing information). 

The expectation is taken over   because it is the only random part of the data. Using the notation 

  {         }, the authors rewrite this expression as 

 ( |   )  ∑ ( |   )     (     )

 

 

This leap is often confusing. In fact,  ( |   ) is also known as the  -function, and a joke among 

researchers says that it is short for “quixotic function.” The authors do not state the steps required 

to rewrite the equation in this way, but they do cite Pattern and Machine Learning by Bishop. The 

missing step is found on page 20 of the text: 

 ( |   )     ( | )  ∑ ( | ) ( )

    
                       

 

In this case,       (     ),    , and    . Making these substitutions gives 

  [    (     ) |  ]  ∑ ( | )

 

    (     ) 

The authors add   to the  ( | ) term conditional, despite the fact that the formula referenced 

does not explicitly require this. Their motives are uncertain as this particular formula for  ( |   ) 

is never meaningfully referenced in the article again. The mysterious inclusion of this expression 

without explanation is one critique that can be made of the work, especially because confused 

readers may waste time looking up the citation, only to find that the information contained therein 

does not exactly match the result printed by the authors. 

To continue, an explicit formula for  ( |   ) is then derived. The authors begin by expanding the 

logarithmic component,     (     ), as follows: 

    (     )     ∏ (       )

 

   

 

The above step has made use of the fact that the log of a product is equal to the sum of the 

multiplicands.  The next step separates  (       ) into two terms: 
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    (     )     ∏ (  |    )

 

   

 (  ) 

The above step utilizes the formula total probability, more generally written as 

 (     )    ( )  ∑ ( |  ) (  )

 

 

Next, the authors write 

    (     )     ∏∏{   (  |      )}
    

   

   

 

   

 

where     
 is the Kronecker symbol defined by 

    
 {

         

           
 

The main idea here is that the term    (  |      ) will be taken to the 0th power (and thus 

transformed into 1) if the assignment made by the missing data is an incorrect one, and it will 

contribute to the log-likelihood otherwise. The product operators indicate that all   observed points 

will contribute to the value of     (     ) and also that all     possible match assignments will 

be considered (with only the correct ones contributing to     (     )). Furthermore, the 

appearance of    and      is precipitated by the second product operator. This explains all the 

steps taken by the authors to expand   ( |   ). 

For the “grand finale,” the authors substitute the expansion of     (     ) back into  ( |   ) 

to obtain an explicit formula useful for estimating parameters: 

 ( |   )    [    (     ) |  ] 

becomes 

 ( |   )    [   ∏∏{   (  |      )}
    

   

   

 

   

|  ] 

The authors do not show the step in which the product operators are eliminated and replaced with 

summation operators. The full work is given below. The first step is to replace the operators: 

 ( |   )    [∑ ∑    
{          (  |      )}

   

   

 

   

|  ] 

Note that the Kronecker symbol has been pulled out of the exponent due using the properties of the 

log function. Because only the Kronecker symbol explicitly depends on  , the expression for 

 ( |   ) can be rewritten as 
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∑ ∑   [    
| ] {          (  |      )}

   

   

 

   

 

The authors do not describe how to determine the value of   [    
| ]. The missing step is filled in 

by returning to the conditional expectation equation above: 

  [    
| ]     ( | )  ∑ ( | ) ( )

    
                       

 

Here,     [    
| ],    , and    . Therefore, 

  [    
| ]  ∑    

 ( | )

 

 

Recall that  

  {  }     
 

Where    can take on values from      , assigning correspondences for each of the   observed 

data points    to a model point   . If the summation operator is made to sum from        , 

the expression for   [    
| ] becomes 

  [    
| ]  ∑    (    |  )

   

   

 

Here, the Kronecker is written simply as     because it appears alongside  (    |  ). The 

symbol   has been replaced with    because   has been rewritten as     , which cannot be 

conditioned on the entirety of  , but only on the observed data point    to which it is linked. Note 

that   [    
| ] is therefore equal to the          , or    . 

  [    
| ]      

To obtain the key parameter estimation equation of the complete-data log-likelihood, three more 

manipulations are necessary. Substituting the result above into  ( |   ) gives 

 ( |   )  ∑∑    {          (  |      )}

   

   

 

   

 

Now, the authors substitute the Gaussian and uniform distributions from the derivation of     into 

the expression. They do not show any steps, but all the necessary work is displayed here. 

 

 ( )  ∑∑   {          [  |  (    )   ]}
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Note that the upper index of the second summation operator has decreased by one because there 

are only   model points. Also note that  ( |   ) has become  ( ) because the expression is now 

explicit. Substituting for the fully parameterized expression of  [  |  (    )   ] gives 

 ( )  ∑∑   {     

 

   

 

   

    {[(  )  ⁄ |  |
  ⁄ ]

  
   [ 

 

 
(    (    ))

 
  

  (    (    ))]}} 

Substituting for the Mahalanobis distance (as before) and eliminating constants gives 

 ( )  ∑∑   {         [|  |
   ⁄    ( 

 

 
‖    (    )‖

  

 
)]}

 

   

 

   

 

Recall the parameterization of   , the       : 

           (    )  {
    

 

 
         

     
    

 
         

   
                          

 

The values of    are in no way dependent on  , and    may therefore be eliminated from the 

expression for  ( ) without affecting the outcome of the ECM procedure, leaving 

 ( )  ∑∑   {   [|  |
   ⁄    ( 

 

 
‖    (    )‖

  

 
)]}

 

   

 

   

 

Applying the properties of the log function to simplify this expression gives the result of the authors: 

 

Horaud et al., Equation (18), page 591. 

The maximization of  ( ) will also maximize the observed-data log-likelihood, and the parameters 

which maximize that log-likelihood are desired. In other words, if    {     
 
     

 
} is the 

current best estimate of the optimal parameters, then 

           
 

[ 
 

 
∑∑   

 
(   |  

 
|  ‖    (    )‖

  
 

 
)

 

   

 

   

]

   
                              

 

However, the authors note that in practice, it is better first to maximize the objective function over 

  only while holding the covariance matrices         constant (lest a difficult nonlinear 

maximization problem arise) and then to estimate the new covariance matrices using the new 

registration parameter values   . Therefore, the maximization step is replaced by two conditional 

 (𝚿)   
 

 
∑∑𝛼𝑗𝑖 (   |𝚺𝑖|  ‖𝒀𝑗  𝝁(𝑿𝑖 𝚯)‖

Σ𝑖

 
)

𝑛

𝑖  

𝑚

𝑗  
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maximization steps: one for the registration parameters  , and one for the covariance matrices 

       . 

The authors elect to do away with the negative sign in      prior to splitting it into two steps. This 

means the steps will instead be conditional minimizations: 

 

Horaud et al., Equation (19), page 591. 

The authors assume that the reader knows how to obtain the covariance matrices and cite no source 

for the procedure leading to Equation (20) in the article. A helpful guide to the EM algorithm by 

Chen and Gupta, 2010 provides the steps. In the guide, the math proceeds as follows (caution: the 

notation and equations are not exactly the same, but they are analogous): 

Define the  -function as 

 ( | ( ))  ∑∑   
( )

 

   

 

   

[      
 

 
   |  |  

 

 
(     )

 
  
  (     )] 

Make the substitution 

  
( )

 ∑   
( )

 

   

 

and take the partial derivative with respect to    to receive 

  ( | ( ))

   
  

 

 
  
( )  

   
   |  |  

 

 
∑   

( )

 

   

 

   
(     )

 
  
  (     ) 

  ( | ( ))

   
  

 

 
  
( )

  
   

 

 
∑   

( )

 

   

  
  (     )(     )

 
  
   

Set this derivative to zero: 

  ( | ( ))

   
           

And solve it for    to obtain an expression for   
 . 

An analogous procedure for the case in the article involves setting the partial derivative of  ( ) 

with respect to    equal to zero:  

  ( )

   
   

𝚯𝑞         
𝚯

 

 
∑∑𝛼𝑗𝑖

𝑞
‖𝒀𝑗   𝝁(𝑿𝑖 𝚯)‖

Σ𝑖
𝑞

 
𝑛

𝑖  

𝑚

𝑗     
𝐂𝐎𝐍𝐃𝐈𝐓𝐈𝐎𝐍𝐀𝐋 𝐌𝐈𝐍𝐈𝐌𝐈𝐙𝐀𝐓𝐈𝐎𝐍 𝐓𝐎 𝐎𝐁𝐓𝐀𝐈𝐍 𝐑𝐄𝐆   𝐏𝐀𝐑𝐀𝐌𝐒 
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Solving this for    provides the formula for   
   

. 

 

Horaud et al., Equation (20), page 592 

The authors turn their attention once again to the formula for      to simplify it. They define 

quantities known as the virtual observations    for the points assigned to model points   . 

 

Horaud et al., Equation (22), page 592 

The weight of virtual observation   is given by   . 

 

Horaud et al., Equation (23), page 592 

The motivation for this substitution is purely simplification. As such, no explanation for the variable 

assignments is given; substituting these quantities into the formula for      gives 

 

Horaud et al., Equation (24), page 592 

Now that a computationally efficient formula for      has been obtained, the formula for    may be 

derived. Recall that for a rigid transformation, 

 (    )   
   

    
   

   {  
   

  
   

} 

The authors substitute for  (    ) in the formula for     , giving 

𝚺𝑖
𝑞  

 
∑ 𝛼𝑗𝑖

𝑞𝑚
𝑗  (𝒀𝑗   𝝁(𝑿𝑖 𝚯

𝑞  )) (𝒀𝑗   𝝁(𝑿𝑖 𝚯
𝑞  ))

 

∑ 𝛼𝑗𝑖
𝑞𝑚

𝑗     
𝐄𝐗𝐏𝐑𝐄𝐒𝐒𝐈𝐎𝐍 𝐓𝐎 𝐎𝐁𝐓𝐀𝐈𝐍 𝐂𝐎𝐕𝐀𝐑𝐈𝐀𝐍𝐂𝐄𝐒

 

𝑾𝑖  
 

𝜆𝑖
∑𝛼𝑗𝑖𝒀𝑗

𝑚

𝑗     
𝐕𝐈𝐑𝐓𝐔𝐀𝐋 𝐎𝐁𝐒𝐄𝐑𝐕𝐀𝐓𝐈𝐎𝐍𝐒

 

𝜆𝑖  ∑𝛼𝑗𝑖

𝑚

𝑗     
𝐕𝐈𝐑𝐓𝐔𝐀𝐋 𝐖𝐄𝐈𝐆𝐇𝐓𝐒

 

𝚯𝑞         
𝚯

 

 
∑ 𝜆𝑖

𝑞
‖𝑾𝑖

𝑞
  𝝁(𝑿𝑖 𝚯)‖

Σ𝑖
𝑞

 
𝑛

𝑖     
𝐂𝐎𝐍𝐃𝐈𝐓𝐈𝐎𝐍𝐀𝐋 𝐌𝐈𝐍𝐈𝐌𝐈𝐙𝐀𝐓𝐈𝐎𝐍 𝐓𝐎 𝐎𝐁𝐓𝐀𝐈𝐍 𝐑𝐄𝐆   𝐏𝐀𝐑𝐀𝐌𝐒 
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Horaud et al., Equation (26), page 592 

The authors next derive an expression for   , despite the fact that the algorithm calls for the 

computation of    first. This is considered to be a confusing notational error on the part of the 

authors. In any case,    is obtained by setting the derivative of    with respect to   to zero and 

solving for  . That is, the equation 

   

  
   

is solved for   to obtain   . The result is 

 

Horaud et al., Equation (27), page 593 

The authors proceed to substitute the formula for    into the formula for   . A large amount of 

algebra is required to expand the expression, which the authors have kindly performed. 

 
Horaud et al., Equation (28), page 593 

The authors proceed to demonstrate that the formulas for both    and    may be conveniently 

simplified in the case of isotropic covariances. Isotropic covariance matrices have the form    

  
   , where   

  is the variance of the Gaussian indexed by  . The authors point out that in this case, 

the Mahalanobis distance will reduce to the Euclidean distance, simplifying some expressions. This is 

an important point because according to the authors, many PR methods utilize isotropic covariances. 

On the other hand, the authors go on to advocate for the use of anisotropic covariances. They 

formulate a solution for    in the anisotropic case by casting it into a convex optimization criterion. 

Their final result is 

𝚯        
𝐑 𝒕

 

 
∑ 𝜆𝑖

𝑞
‖𝑾𝑖

𝑞
  𝐑𝑿𝑖  𝒕‖

Σ𝑖
𝑞

 
𝑛

𝑖     
𝐂𝐎𝐍𝐃𝐈𝐓𝐈𝐎𝐍𝐀𝐋 𝐌𝐈𝐍𝐈𝐌𝐈𝐙𝐀𝐓𝐈𝐎𝐍 𝐓𝐎 𝐎𝐁𝐓𝐀𝐈𝐍 𝐑𝐄𝐆   𝐏𝐀𝐑𝐀𝐌𝐒 

 

𝒕   ∑ 𝜆𝑖𝚺𝑖
  

𝑛

𝑖  

 

  

∑ 𝜆𝑖𝚺𝑖
  (𝑾𝑖  𝐑𝑿𝑖)

𝑛

𝑖     
𝐔𝐏𝐃𝐀𝐓𝐄𝐃 𝐓𝐑𝐀𝐍𝐒𝐋𝐀𝐓𝐈𝐎𝐍 𝐂𝐎𝐌𝐏𝐎𝐍𝐄𝐍𝐓

 

𝐑        
𝐑

 

 
∑ 𝜆𝑖(𝑿𝑖

 𝐑 𝚺𝑖
  𝐑𝑿𝑖   𝑿𝑖

 𝐑 𝚺𝑖
  𝒕   𝑿𝑖

 𝐑 𝚺𝑖
  𝑾𝑖   𝒕  𝚺𝑖

  𝑾𝑖  𝒕  𝚺𝑖
  𝒕 )

𝑛

𝑖  
𝐔𝐏𝐃𝐀𝐓𝐄𝐃 𝐑𝐎𝐓𝐀𝐓𝐈𝐎𝐍 𝐂𝐎𝐌𝐏𝐎𝐍𝐄𝐍𝐓
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Horaud et al., Equation (34), page 593 

The authors define the variables as in Table 1. However, their explanation of the variable     is 

insufficient. They state that “the entries of the six     matrices     are easily obtained from the 

constraint      .” It is likely that     is tenor notation for the mixed rank-2 tensor version of 

Kronecker’s symbol,    . In this case, the dot product 〈     〉 would yield     because 〈     〉  

           (    
 )   Since   is rank-one, then the trace of the     matrix     

  will be equal 

to 1 or 0.  

The anisotropic covariance model requires the matrix   to be positive semidefinite, but the authors 

do not explain what this means. The definition of a positive semidefinite matrix is provided here. 

The     matrix    is positive semidefinite if for any     vector  , 

       

This completes the description of the anisotropic covariance model proposed by the authors. They 

now extend the ECMPR-Rigid algorithm to the problem of articulated point registration. 

Table 1 – Quadratic framework variables. 

Quantity Definition Comment 

     ( ) 
The     vector containing the 

entries of  . 

      
Rank-one positive-symmetric 

matrix derived from  . 

    undefined n/a 

   ( ) (       )
  Vectorization function. 

         
    matrix derived from the 

expansion of Equation (28). 

        

    vector used in the 
rearrangement of Equation 

(28). 

  ∑      
    

  

 

   

 
    matrix used in the 

rearrangement of Equation 
(28). 

  ∑    
    

  

 

   

 
    matrix used in the 

rearrangement of Equation 
(28). 

   ∑    
  

 

   

 

  

 

    matrix used in the 
rearrangement of Equation 

(28). 

    ∑   
    

 

   

  
    vector used in the 

rearrangement of Equation 
(28). 

{

(𝝆  𝒓 )        
(𝝆 𝒓)

(〈𝐀 𝝆〉   𝒃 𝒓) 

〈𝚫𝑘𝑙  𝝆〉  𝛿𝑘𝑙  𝑘         𝑙        

𝝆 ≽ 𝒓𝒓     
𝐀𝐍𝐈𝐒𝐎𝐓𝐑𝐎𝐏𝐈𝐂 𝐂𝐎𝐕𝐀𝐑𝐈𝐀𝐍𝐂𝐄 𝐌𝐎𝐃𝐄𝐋
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      ∑   
      

 

 

   

  
    vector used in the 

rearrangement of Equation 
(28). 

    [
         

   
         

] Kronecker product. 

 

Articulated Point Registration 

The problem of articulated point registration requires estimation of the pose of an articulated shape, 

such as a human hand. It can be solved by applying the principles behind rigid point registration to 

the individual rigid segments of the articulated shape (i.e. the palm of the hand, and each 

component of all five digits). 

The article utilizes a modified open kinematic chain to describe the hand model. An open kinematic 

chain consists of a series of movements of a linked segment (in this case, a jointed finger) whose 

distal end is free in space (the fingertip has no distal attachment, of course). The authors consider 

the root of the chain (in this case, the palm) to possess six degrees of freedom (three rotations and 

three translations), while the segments (the fingers) possess between one and three.  

In this model, the root has free motion while the fingers have constrained motion. The relevant 

transformation in this case is 

 (  
( )

  )   ( )  
( )

  ( )   {       } 

The authors note that the key difference between the articulated point registration transformation 

and the rigid point registration transformation lies in the kinematic parameters. The rotations and 

translations were the free parameters in the rigid case, but here, they are constrained by the 

kinematic parameters, denoted   {       }, where    represents the motion of the palm and 

the other         represent the motions of the other rigid parts (the fingers). 

For simplicity, the authors utilize a     displacement matrix which incorporates both the rotation 

and translation components of the transformation in a single matrix,   ( ). They go on to express 

  ( ) as a chain of homogeneous transformations: 

  ( )    (  )  (  )   (  ) 

Where    describes the free motion of the palm, parameterized by    {   (  )   }. Each    has 

both a fixed motion component (a change of coordinates) and a constrained motion component 

(parameterize by between one and three angles). 

Since estimating the entire parameter vector   all at once presents difficulties similar to those seen 

in the rigid case, a similar solution involving a piece-by-piece estimation strategy is proposed by the 

authors. One rigid segment is considered at a time instead of simultaneously solving for the 

parameters of all rigid segments. The authors point out that at least five other approaches have 

advocated for the latter procedure. To prepare for the derivation of the optimal parameters via 

conditional minimization expressions, the authors specify the following notations: 
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   [
    
  

]     [
   

  
] 

          [
              

   
] 

  
        

     

 

 
∑  ‖        

( )
   ‖

  

 
  

      
                                                

 

  
        

  

 

 
∑  ‖            

( )
       ‖

  

 
  

      
                                                   

 

The authors simplify this notation by introducing the following substitutions: 

                 
  

  
( )

         
( )

 

and the second conditional minimization is rewritten as 

  
        

  

 

 
∑  ‖        

( )
       ‖

  

 
  

      
                                                   

 

This does not seem to be a particularly useful simplification because the subscript of   continues to 

possess the     index, but this notation will persist for the remainder of the discussion. In order to 

use the minimization in Equation (44), the transformation      must be known. Luckily, it is 

recursively obtainable because       [
    
  

] (see above). 

 

The ECMPR-Articulated Algorithm 

1. Rigid registration of the root part: Initialize the current set of data points  ( ) with the whole 

data set. Apply the ECMPR-Rigid algorithm to the data set  ( ) and the set of model points 
associated with the root part    in order to estimate the pose of the root part. Compute 
      using Equation (37). Classify the data points into inliers and outliers. Remove the 

inliers from  ( ) to generate a new data set  ( ). 
2. For each      , rigid registration of the pth part: Apply the ECMPR-Rigid algorithm to the 

current set of data points  ( ) and the set   . Estimate    from the formula for   
 , which is 

Equation (44). Compute    using Equation (37) and          . Classify the data points into 

inliers and outliers. Remove the inliers from  ( ) to generate a new data set  (   ). 

 

 

Now that the key algorithms have been described, the details of the experiments conducted by the 

authors will be discussed. 
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Experiments: ECMPR-Rigid 

The performance of the ECMPR-Rigid algorithm was compared to that of the Trimmed Iterative 

Closest Point algorithm (TriICP). TriICP is a robust implementation of the ICP algorithm which utilizes 

random sampling. Two different experiments were designed. 

Experimental Setup 1 

 

 

Figure 1 - Uncorrupted inliers. 

 

Figure 2 - Corrupted (noisy) inliers. 

 

Figure 3 - ECMPR-Rigid Experiment 1 outliers. 

Three trials were run for the ECMPR-Rigid algorithm and two trials were run for the TriICP algorithm. 

The trials varied in their degrees of simulated noise and their types of covariance models. 15 ground 

truth model points were considered in this experiment. 15 inliers were generated from these model 

points by rotating them by     and randomly translating them. Two trials featured no noise, and 

both algorithms were 100% effective (although the TriICP algorithm took much longer). The 

derivation of inliers in this case is described by Figure 1. Figures 2 and 3 diagram the generation of 

noisy inliers and the outliers. The trials featuring anisotropic Gaussian noise had worse performance 

than those without noise, and the ECMPR-Rigid algorithm performed better than the TriICP 

algorithm. The anisotropic Gaussian noise was drawn from two 1D Gaussian probability distributions 

with two different variances along each dimension, and the variances were allowed to vary between 

10 and 100 percent of the box bounding the set of observations. That is, inlier locations were shifted 

by a value drawn from distributions like those in Figure 4. 
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Figure 4 - 1D Gaussian distributions. 
http://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-
Normal_Distribution_PDF.svg.png 

The initialization of parameters for both algorithms was always the same:      and    . The 

authors report that the ECMPR-Rigid algorithm is robust to outliers, which is a valuable property 

(especially for the articulated point registration case). Since ICP is so sensitive to initialization, it 

takes many more iterations to finish given such an initialization. Its random sampling strategy for 

multiple initializations allows it to arrive at a solution, but in much more time than ECMPR-Rigid. 

 

Figure 5 - Iterations of the ECMPR-Rigid algorithm. 2 iterations (a), 6 iterations (b), and 35 iterations. This figure is a 
reproduction of Horaud et al., Fig. 2. 

Figure 5 illustrates the progress of ECMPR-Rigid across a number of iterations. The large blue dots 

are model points, the green squares are inliers, and the empty red squares are outliers. As the 

number of iterations increases, the sizes of the covariances decrease.  

As an auxiliary result of this experiment, the authors ran 1,000 trials of ECMPR-Rigid in the 

anisotropic covariance case. These data were treated as a performance measure of the algorithm. 

The curves plotted by the authors in Figure 4 of their article contain the mean (middle line) and 

upper and lower standard deviations (bounding lines) of the data from the 1,000 trials. This metric is 

a useful performance measure because it allows the algorithm’s efficacy to be conveyed at a glance. 

http://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_Distribution_PDF.svg.png
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The authors also report the percentage of correct matches returned by both algorithms. However, 

they note that the algorithms classify matches differently, and point to the error in rotation and 

translation as a more reliable measure of comparing the two. In these regards, ECMPR-Rigid 

outperformed TriICP. 

The full results of the experiment are reprinted in Table 1 on page 595 of the original article. 

 

Figure 6 - Correct matches vs. inlier rotation. This figure is reproduction of Hedley et al., Fig. 4a. 
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Figure 7 - Error in rotation vs. inlier rotation. This figure is reproduction of Hedley et al., Fig. 4b. 

 

Figure 8 - Error in translation vs. inlier rotation. This figure is reproduction of Hedley et al., Fig. 4c. 
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Experimental Setup 2 

The next ECMPR-Rigid experiment makes use of stereo data. Using a pair of cameras situated at 

different locations with respect to a walking subject, a pair of images was taken at Time 1 and Time 

2, over which the subject translated a distance of       . Using stereo vision software, a set of 3D 

points was reconstructed for each image pair. The set of 3D points at Time 1 constituted the 

“model” points, or the ground truth. The set of 3D points at Time 2 constituted the “observed data” 

points. 

When the two point sets were fed to ECMPR-Rigid, it correctly estimated both the rotation and 

translation aligning the two image pairs. However, TriICP was only able to recover the correct 

rotation. The full results of the experiment are reprinted in Table 2 on page 591 of the original 

article. 

The translation error was computed by 
‖    ‖

‖  ‖
 where   is the estimated translation vector and    is 

the ground truth. Also, the minimization error is given by √(   ∑ ‖        ‖    
   )

  
, where 

    is the number of inliers estimated by each algorithm.  

 

Figure 9 - ECMPR-Rigid Experiment 2 setup summary. 

Experiments: ECMPR-Articulated 

The performance of the ECMPR-Articulated algorithm was evaluated. Two different experiments 

were designed. 

Experimental Setup 1 

The first ECMPR-Articulated experiment was performed on simulated data. Recall that the 3D hand 

model used by the authors consists of 5 open kinematic chains. Each chain is rooted in the palm of 

the hand, which has 6 degrees of freedom. From the root, each chain is built from three segments 
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for each of the five digits. The thumb has five rotational degrees of freedom, whereas the other 

fingers have only four. This means that the model has in total 16 segments and 27 degrees of 

freedom. 

The 3D hand model was morphed into different poses, and 15 model points were selected for each 

hand part. Inliers were generated by altering the model points with Gaussian noise (variance: 10 

percent of the size of the bounding box of the data set). A number of outliers equal to 30% of the 

total number of model points were drawn from a uniform distribution and added to the data set. 

 

Figure 10 – ECMPR-Articulated Experiment 1 inliers. 

 

Figure 11 – ECMPR-Articulated Experiment 1 outliers. 

 

Figure 12 - (a) The ground truth of the simulated poses for ECMPR-Articulated in Experiment 1 and the simulated data 
(inliers and outliers). (b) A correct registration result. (c) ECMPR-Articulated failed to correctly estimate all of the 
kinematic parameters due to an improper initialization of the covariance matrix. This figure is a reproduction of Horaud 
et al., Fig. 6. 

When the algorithm was initialized with large covariances, the results were excellent. Part (b) of 

Figure 12 illustrates this. However, when initialized with small covariances, the results were poor. 

The authors attribute this to the fact that a small covariance overemphasizes the importance of 

points quite near to the model point while essentially ignoring other points completely. This 

ignorance seems to reduce the quality of the results of the algorithm. Initializing with large spherical 

covariances increases the performance of the algorithm, but it also increases the number of 



EN.600.646 Seminar Article Report VAN MAELE 

Page 24 of 30 
 

iterations necessary to arrive at the optimal parameter assignment. Figure 8 in the original article 

(page 593) shows the performance of the algorithm by plotting digit angle vs. frame. 

The authors found that the number of outliers had little impact on the performance of the 

algorithm. They believe that the experiment also proves the importance of using an anisotropic 

covariance model. One critique of the article is that the authors do not report data to show the 

difference between initialization with isotropic vs. anisotropic covariances, only large vs. small 

covariances. This makes it difficult to validate such a claim. 

Experimental Setup 2 

The second ECMPR-Articulated experiment was performed on real data. 

 

Figure 13 - ECMPR-Articulated Experiment 2 setup summary. 

In this experiment, a stereo camera recorded the motion of a human hand over the course of five 

seconds. At 20 frames per second, this amounted to 100 image pairs for each data sequence. The 

data sets of 3D points are passed to ECMPR-Articulated, which recovers the transformation between 

the image pairs. The authors animate the 3D hand model using this transformation to visualize the 

efficacy of the algorithm, as seen in Figure 14. Although such visualizations are helpful, one critique 

of the article is the lack of a data table summarizing the quantitative performance of the algorithm. 

The other experiments are accompanied by tables and/or graphs, and the fact that this experiment 

was performed with real data makes such figures even more desirable. 



EN.600.646 Seminar Article Report VAN MAELE 

Page 25 of 30 
 

Furthermore, the authors mention that between 500 and 1,000 reconstructed points are generated 

by the stereo algorithm per time step. One critique that could be made is the use of the phrase “time 

step.” It is unclear whether the authors mean that 500-1,000 reconstructed points are generated per 

image pair or per second, as they give the frame rate in frames per second. 

 

Figure 14 – The image of a hand and the result of tracking for a grasping movement. This figure is a reproduction of 
Horaud et al. Fig. 9. 

The authors draw the paper to a close in the Conclusion section. 

Conclusion 
After summarizing the original contributions of their work, the authors generalize that ECMPR 

performs better than ICP. They support this claim by pointing out that ECMPR is less sensitive to 

initialization and more robust to outliers than ICP is. 

The authors have a suggestion as regards the possible improvement of the efficiency of ECMPR. An 

implementation of the EM algorithm known as Classification EM (CEM) exists which forces the 

posterior probabilities to either 1 or 0 after each E-step. This method is suboptimal, but the authors 

plan to study it in the context of point registration not only to improve the speed of ECMPR, but also 

to develop a probabilistic interpretation of ICP. They claim that the latter is of use owing to the 

potential for a link between probabilistic and deterministic registration methods. They also indicate 

that a kD-tree data structure may help increase the efficiency of ECMPR at the E-steps. 
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As far as the potential applications of their findings, the authors have no specific comments. 

However, it is clear that their work has potential applications in computer vision object recognition 

as well as in motion tracking. Also, the 3D/3D registration of certain organs (such as those found in 

the respiratory tract or the vasculature) in medical images is an important part of both surgical 

planning and radiation therapy. 

CRITIQUE 

Strengths 

The main conclusion of the authors is that their ECMPR algorithm is superior to the ICP algorithm. 

The various experiments outlined in the article have the results to support such a claim. The fact that 

the authors have demonstrated the efficacy of a repeatable point registration procedure which 

performs better than at least one leading alternative is an accomplishment. 

The curves plotted for the ECMPR-Rigid experiments were effective visual conveyers of the strength 

of the method. The side-by-side comparison featured in Horaud et al., Fig. 8 was particularly 

effective. 

Finally, although a reordering of the development of the equations would have made a first-pass 

read more informative, the article as a whole excelled at fleshing out the “big picture concepts” of 

both rigid point registration and articulated point registration. Even a reader unschooled in robotics 

would have no problem understanding the kinematic chains described in the latter case. 

Weaknesses 

The main experimental shortcoming of the work is the lack of numeric results reported for the 

ECMPR-Articulated experiment with real data. The fact that experiments with real data are inherent 

less repeatable than those with simulated data creates an even more urgent need to publish clear 

cut quantitative data. It is unlikely that this particular article would have been accepted for 

publication if the ECMPR-Rigid experiment with real data had also lacked numeric figures. 

Another critique that could be made of these experiments is the fact that ECMPR-Rigid was 

compared to only one other (and non-probabilistic) algorithm. The authors mention several EM-like 

algorithms which incorporate features similar to the novel algorithm. It would have been interesting 

to see ECMPR-Rigid compared to these predecessors in addition to TriICP. 

The Introduction of the article contains a large degree of background information which is not 

actually relevant to the contributions of the paper. For example, the third paragraph of the 

Introduction discusses specific details pertaining to soft assignment methods which do not facilitate 

the comprehension of any material presented thereafter. The Introduction would have been more 

useful had it contained more background on the EM and ECM algorithms, and possibly more details 

on the use of GMMs. 

Although the article tends to flow nicely in terms of its manipulation of the equations, it has a habit 

of proceeding from section to section in a confusing way. That is, the derivations proceed from very 

general concepts (for example, the observed-data likelihood function  ( ) ) to the specific 

contributions of the work (the ECMPR algorithms), but it would have benefited from either cutting 

out a certain amount of the general concepts or introducing the more specific concepts sooner. On a 

first-pass reading, it is difficult to understand the motivations behind the equation manipulations 
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unless one is extremely familiar with the ECM algorithm and the application of GGMs to missing data 

problems. A worthy suggestion might be to place the ECMPR-Rigid algorithm in a gray box near the 

beginning of the problem formulation. 

Another shortcoming of the article is the way in which it cites some of its sources for equation 

manipulations. The most prominent offender is Equation (9) on page 591. The source cited is Pattern 

and Machine Learning by Bishop. This book contains 703 pages, and many of its sections treat the 

topic of the article. However, the authors of the article offer neither an explanation of the 

transformation yielding Equation (9) nor a specific page number in Bishop which presents it (if 

interested, the transformation currently under discussion appears on page 20 of Bishop). 
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ECMPR-Rigid Algorithm 

 

Figure 15 

 

 

 

ECMPR-Articulated Algorithm 

 

Figure 16 
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Expressions for Quantities Appearing in the ECMPR-Rigid Algorithm 

Quantity Description Formula 
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Object Formatting 

  Vector  . 

  Matrix M. 

  {  }      The 3D coordinates of   “observed” data points. 

  {  }      The 3D coordinates of   “model” data points. 

  {  }      The “missing data” (data-to-model point 
correspondences).      assigns observed point    

to data point   . 

         Transformation (applied to a model point to map it to 
a data point). 

  The set of parameters. 

 (    ) Coordinates of transformed model point (see above). 

 (    )   
   

    
   

   {  
   

  
   

} Rigid transformation and its parameters. 


