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ABSTRACT 

A surgical manipulator, the JHU/APL snake manipulator, intended to make hip osteolysis surgery 

more effective and faster with fewer complications has been developed. It has translational, 

rotational, and bend modes of motion, and its current controller utilizes a keyboard and mouse. In 

this paper, we describe the successful development and implementation of two distinct interfaces 

for the manipulator using a PHANTOM Premium haptic controller, which aim to increase the 

intuitiveness of control. The first interface allows the user to select a target position and have the 

manipulator move to it. The second allows the user to continuously control the position of the 

manipulator. We also discuss our various additions and enhancements to the base interfaces, 

including the use of audio, visual, and force feedback.   
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1. BACKGROUND 

1.1. PROBLEM 

The number of total hip arthroplasties (THAs) is expected to increase by over 174% in the 

next twenty years. Component wear and osteolysis, the active resorption of bone around 

components, are the primary phenomena responsible for the shortened life spans of total 

hip replacements. Wear of the polyethylene liner of the implant causes macrophage 

activation and subsequent bone resorption. This osteolysis comprises the integrity of the 

bone and thus introduces the need for frequent revision surgery to remove the lesion and 

maintain the previously-used fixed acetabular component. Osteolytic lesions of the bone 

around the implant, if not removed, may lead to complications such as bone fracture or 

component loosening or disconnection [3]. 

Minimally-invasive approaches aim at replacing the polyethylene liner while preserving 

the acetabular and femoral components of the THA. In this manner, surgeons minimize the 

risk of introducing bone fracture. Minimal-invasiveness is achieved by accessing lesions 

through screw holes in the bone drilled from the original implant. A major challenge, 

however, is fully accessing the entire volume inside the lesion to clean the cavity; studies 

have shown that on average less than half of the lesion is cleaned during manual 

procedures using curettes and other tools. Eventually, this lack of coverage forces the need 

for majorly invasive surgery in which the hip replacement is removed, the lesion is cleaned 

out, and another hip replacement is introduced [3]. Of course, an additional issue is that 

since the surgery site is being accessed through a screw hole during the minimally-invasive 

procedure, the surgeon also cannot visualize the lesion. He must use x-ray fluoroscopy, 
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though this use must be limited to prevent overexposure of the patient and staff to 

radiation. Therefore, a highly dexterous manipulator that can cover the majority of the 

volume inside the lesion during the minimally invasive surgery as well as a way to track it 

is essential. 

The Johns Hopkins University Whiting School of Engineering and Johns Hopkins Applied 

Physics Laboratory have developed such a cable-driven surgical manipulator system (see 

‘Devices’ below). However, accurate and smooth operation of the manipulator is difficult, 

and the system lacks force feedback that allows the surgeon to “feel” his way around the 

cavity as he does during manual surgery. Since the system does not have a navigation 

system that allows the surgeon to orient himself within the lesion, he can only estimate 

where in the cavity the manipulator is currently located. Prior research in the surgical 

value of haptic feedback has shown that robotic systems incorporating haptic feedback can 

significantly improve surgical performance. Shortened operative times; increased 

consistency, precision, and performance; and decreased frequency of surgical errors are all 

commonly demonstrated benefits drawn from comparing robotic systems with and 

without haptic feedback [6][8]. With no consensus as to how best implement haptic 

feedback, a variety of haptic-deliverance paradigms have been implemented and evaluated. 

With the integration of haptics into the robotic control interface, we aim to bring the 

aforementioned benefits to the cable-driven surgical manipulator system during osteolysis 

revision surgery. 
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1.2 DEVICES 

1.2.1 JHU/APL SNAKE MANIPULATOR 

The Johns Hopkins University Whiting School 

of Engineering and Johns Hopkins Applied 

Physics Laboratory have developed a cable-

driven surgical manipulator system. 

Simulations of the system have suggested 85–

95% coverage rates of surgically relevant 

osteolytic cavities [3], a significant improvement from 

traditional manual surgical methods. It has a snake-

like cannula that can access osteolytic lesions through 

the lumen of a larger, rigid guide cannula [3].The 

actuation unit consists of a Y-θ stage with cable 

drive motors. The stage is composed of a 

translational (Y—forward and back) actuator and a rotational (θ) actuator, both of which 

are controlled by DMX-UMD-23-3 integrated stepper motors (ArcusTechnology, Inc.) [3]. 

The manipulator can also be bent in plane in either direction by adjusting cable lengths 

with PMX-2ED-SA 2-axis stepper motor controllers (Arcus Technology, Inc). These 

directions are denoted as the X* and Y* direction [not the same X and Y axes of 

manipulator space]; likewise, the cables on either side of the manipulator are 

correspondingly denoted as the X* and Y* cables. To bend the manipulator in the X* 

direction, the X* cable is shortened until the desired bend is achieved. The Y* cable is left 

slack. A similar process is used to bend the cable in the Y* direction. 

Figure 2: The manipulator in a bent configuration 

Figure 1: The manipulator in a straight configuration 
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The manipulator also has two 10-bit analog inputs at its base on either side[3], which 

report the loads on the cables for both the X* and Y* directions. 

Currently, the actions of all motors and so the movement of the manipulator may be fully 

controlled using keyboard commands via the MATLAB keystroke controller as the motors 

are interfaced with the PC via USB. An application may control the motors by invoking 

an ASCII command set on the PMX and DMX C++ dlls. In this way, the keystroke controller 

also allows for custom motor commands to be sent to each motor and for force readings, 

positions readings, etc. to be polled from each motor as specified in the PMX and DMX 

user's guides. Finally, video is available via a camera mounted on the unit. However, the 

camera translates with the manipulator depriving it of 

translational information compromising some of its utility. 

 

 

 

 

  Figure 3: The manipulator 
with camera 
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1.2.2 PHANTOM PREMIUM 

The PHANTOM Premium is a haptic controller that allows for movements and force 

feedback in 6 degrees of freedom (DOF). Studies using this system have shown the benefit 

of using force feedback is two-fold: the applied forces can both act as a physical constraint 

on hand motion and as a guide to for planning intended motion [6][9]. The PHANTOM also 

reports positional and velocity measurements for the 6 DOF. Finally, the PHANTOM has a 

button on the stylus that can be toggled at the preference of the user. 

 

 

 

 

 

Interacting with the PHANTOM is done through a C++ interface. Within this interface, 

multiple options are available. For example, force feedback can be applied to simulate a 

variety of different natural forces, including friction and viscosity. In addition, the 

PHANTOM can be made to act as though the stylus tip is attached to a given point in space 

via a spring of given spring constant. Another mode of force feedback is used to constrain 

the workspace of the PHANTOM. A CAD model can be loaded and the PHANTOM will 

generate force feedback to simulate the dimensions and shape of the object. A visualization 

of the workspace is also generated.  

Figure 4: The PHANTOM Premium haptic 
controller 

Figure 5: The PHANTOM Premium stylus, 
complete with button 
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2. APPROACH 

2.1 INTERFACES 

In designing the interface between the PHANTOM and the manipulator, two different 

methods of control were considered. The first is based on positional data and allows the 

user to move the manipulator to a specific target location. 

The second interface allows for continuous control of the manipulator via the PHANTOM. It 

relies on velocity data gathered from the PHANTOM for translation and rotation and 

positional data for bend. 

2.1.1 POINT/CLICK 

The point/click interface is based on positional control between the PHANTOM and the 

manipulator. Essentially, the position of the PHANTOM, relative to a pre-defined origin, is 

passed into the control program, scaled, and then the manipulator is made to move to that 

target position. 

 

 

 

 

 

 

Figure 6: Point/click interface 
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Movement in this mode is achieved through the inverse kinematic model. Such a model 

allows the position of the PHANTOM Premium to be read as the desired position of the 

manipulator with some scaling. This desired position will then be the target position for the 

manipulator. Because of its motion, a natural way to model the workspace of the 

manipulator is as a cylinder. Thus, its movement can intuitively be written in cylindrical 

coordinates. In this scheme, translation is in the y-plane of the manipulator, rotation is in 

the x-z plane of the manipulator and about the y-axis, and the bend of the manipulator 

is  √     . 

Rotation and translation were mapped by finding the number of motor pulses needed to 

translate/rotate a certain distance. These conversion factors were then tested repeatedly 

and updated with each trial. The final values predicted final position to sub-

millimeter/sub-degree accuracy. These conversion factors are in the code and allow a 

desired movement to be translated into the necessary number of motor pulses to complete 

that movement. 

Table 1: Conversion factors for translation and rotation 

Translation conversion factor Rotation translation factor 

52.79 mm/pulse 22.29 deg/pulse 

 

Mapping bend in this way proved to be trickier because of the cable-driven actuation of the 

unit. During calibration, the configuration of the manipulator (i.e. x and y coordinates of the 

tip) was correlated with the number of motor pulses to achieve that configuration. Load 

data was also taken. Then, while the manipulator was operated, the number of motor 
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pulses needed to achieve a desired configuration was known. Calibration was done 

experimentally by bending the manipulator a certain number of motor pulses with 

constant step size and tracking the position at each point using MATLAB’s ginput function 

which allows users to record mouse click positions. Using these points as a foundation, 

linear interpolation is used to find the number of motor pulses required to bend the 

manipulator to a certain configuration and thus achieve the target position. This also has 

the benefit of acting as a software stop on the bend of the manipulator. During calibration, 

the manipulator is not allowed to bend past 90 degrees, well within the safe bend range of 

the manipulator. Later, if a desired position requires bend outside the range measured 

during calibration, the number of motor pulses allowed is simply the maximum measured 

number of pulses. 

A major issue with this control scheme is hysteresis—that is, the dependence of the 

system's current state on its past states. Because of cable slip that occurs during normal 

manipulator operation and other issues, the relationship between motor pulses and 

manipulator configuration is not constant. This leads to inaccuracy in the manipulator's 

motion to a target position. Another issue occurs in that cables must be replaced when they 

break. The variance in material properties and the length and tightness of the cable in the 

unit leads to inconsistencies between predictions based on calibration data and actual 

movement. 

To correct this, various methods have been considered. These include also correlating 

configuration with the load read by the load cells at the manipulator tip. When cables slip, 

are tightened, or have to be replaced, their slack length changes–that is, the amount of 
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cable that must be cycled through before it becomes taut and is able to bend the 

manipulator changes. However, load data can be used, rather than motor pulses, to predict 

end-effector position. As the relation between load and configuration seems to be constant 

over many trials and movements, this may serve as a reliable method of handling changing 

slack lengths. 

Another method involves calibrating the manipulator prior to each session. This also 

leverages the fact that the relation between load and configuration is constant. Rather than 

performing the entire calibration process each session, the manipulator bends until the 

load cell reaches a certain threshold. The number of motor pulses required to reach this 

load is compared to the number of motor pulses required to reach the same load in the old 

calibration. A new calibration table is made that is offset by the difference in required 

motor pulses. Thus, prior to each subsequent session, the manipulator can automatically 

calibrate itself. Automating this prevents serious inconvenience to the user. The method of 

off-setting the motor pulse calibration rather than positioning based on load was chosen as 

calibrating on load would fail when the manipulator was contacted externally.  

To actually operate the manipulator in this mode, users move the PHANTOM stylus tip to a 

target position. They then click and release the button on the stylus to make the 

manipulator move to the target position (see Fig 6). 

2.1.2CONTINUOUS MOTION 

The continuous motion mode allows the user to continuously control the motion of the 

robot. Moving the PHANTOM stylus tip forward and back without the button pushed 

translates the manipulator forward and back. Rotating the PHANTOM stylus about a center 
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point without the button pushed rotates the manipulator. The center point is defined as the 

point where the button was released. Finally, bending the manipulator is done by holding 

down the button and moving the PHANTOM stylus in the bend plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Rotating the manipulator with the continuous 
control interface 

Figure 8: T the manipulator with the continuous control interface 

Figure 9: Bending the manipulator with the continuous control 
interface 
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Initially, position control was used for continuous motion control. However, because there 

is no on-the-fly position control in the software of our DMX motors for translation and 

rotation, this resulted in commands stacking up and being dumped or resulted in a jittery, 

stop-go movement. As a result, the manipulator was not as responsive or smooth as was 

desired. To remedy this problem, the PHANTOM was polled at varying rates instead of 

continuously. However, no optimal trade-off between responsiveness and smooth motion 

could be found. 

As a result, velocity control was pursued rather than positional control. The PHANTOM can 

be polled for its velocity in the x, y, and z directions. Moreover, the DMX motors have 

functions that allow on-the-fly speed change, which precludes the problems with 

continuous positional control describe above. For translation, the velocity of the PHANTOM 

in its z direction was taken, scaled, and then fed to the motor controller, which then moves 

at the desired speed. The velocity was scaled through the function below: 

 

 

 

 

 

 

 

Figure 10: Translation velocity scaling function 
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As the function asymptotes at a pre-determined value, this function serves as a software 

limit on the velocity of the manipulator. Past a certain velocity, regardless of the actual 

PHANTOM velocity, the manipulator moves at some pre-determined safe max velocity. 

Rotation proved to be more complicated than translation because the PHANTOM only 

reports linear velocities and angular velocity was needed to properly control the DMX 

rotation motor. An expression for angular velocity was found as the time derivative of θ. 

Again, θ is defined to be the angle of rotation from the positive x axis in the x-z plane, 

namely       (
 

 
). The expression for angular velocity is 

  

  
 
   ̇    ̇

     
. Clearly, angular 

velocity depends on x and z position and linear velocity. These values can be polled from 

the PHANTOM and so angular velocity can be found. Similar to translation, the below 

function was used to allow fine rotations and act as a software limit on max rotational 

velocity. 

 

 

 

 

 

 
Figure 11: Angular velocity scaling function 
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Because of the way the manipulator is rotated (rotating the PHANTOM about a central 

point), some intuitive way is needed to allow the user to keep track of that central point. 

Otherwise, the manipulator may act in unexpected ways. To help the user keep track of this 

information, the PHANTOM's spring force was used. The virtual spring is attached to the 

PHANTOM stylus at one end and the center point at the other. The spring constant was 

experimentally determined to allow the user to 'feel' the location of the central point 

without restricting the user's motion. 

For both translation and rotation, a high-pass filter was built into the code to prevent 

unintended motion of the manipulator due to tremor or small movements of the hand. 

Bend is controlled by PMX motors with the ability to change target position on-the-fly. This 

precludes the problems experienced with continuous positional control of translation and 

rotation. As a result, positional control was used to control bend in this interface. The 

PHANTOM workspace was divided into two parts via a line perpendicular to the bend plane 

so that if the tip of the stylus was to one side of the dividing line, the manipulator would 

bend to that side. Additionally, the farther the stylus was from the dividing line, the more 

the manipulator would bend. The value of the scaling was experimentally determined to 

allow for fine control of the manipulator bend. 

When the manipulator is unrotated, this dividing line is simply a vertical line that passes 

through the origin of the PHANTOM workspace. Moving the stylus to left of the line bends 

to manipulator to the left and moving it to the right bends the manipulator to the right. To 

retain this sense of intuitiveness (i.e. the manipulator bends in the same direction that the 

PHANTOM is moved), the dividing line must rotate with the manipulator. Thus, if the 
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manipulator has been rotated by 90°, the dividing line should now be horizontal so that 

moving the PHANTOM upwards bends the manipulator up and moving it downwards 

bends the manipulator down. To test which side of the threshold the PHANTOM tip is on, 

the following check is used. If the following expressions are satisfied, the X* cable is 

tightened: 

{
     (       )                 

     (       )                 
 

The greater than sign is flipped for a rotation of greater than 180 degrees because this is 

the point at which the X* cable transitions from 'above' the threshold line to 'below' the 

threshold line. 

Initially, continuous control was in effect for bend, translation, and rotation all at the same 

time. While testing this interface, though, it was found that controlling all of these modes of 

motion at the same time was too complicated. It was especially difficult to differentiate 

between bend and rotation. Thus, bend was decoupled from the other modes of motion to 

give the user more control over the manipulator's movement. This is done by only sending 

commands to the DMX motors for translation and rotation while the stylus button is not 

pressed. While the stylus button is pressed, commands are instead sent to the PMX motors 

to control bend. An important factor to consider was what to do with the bend of the 

manipulator when the button was released. It was deemed most intuitive to have the 

manipulator retain the bend while being rotated and translated. To ensure that the bend 

can then be modified from that position once rotation/translation is complete, the position 

of the manipulator tip is stored as a vector whose magnitude depends on the bend of the 
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manipulator. This vector is translated and rotated along with the motion of the 

manipulator to store the position accurately as the manipulator moves. 

Additionally, in response to feedback from users, translation and rotation were decoupled 

to allow easier control of the PHANTOM. To achieve this, the absolute value of the scaled 

translational and rotational velocities are compared. The minimum of the two values is set 

to zero, and this information is sent to the motor controller. Since translational and 

rotational velocities are not directly comparable, the values must be rescaled. 

Experimentally, it was found that doubling the rotational velocity results in proper 

comparisons leading to the desired motion of the manipulator. The idea behind this is that 

the user will move more quickly in the way of the desired motion. Thus, the unintended 

motion should have a lower velocity than the desired one. This essentially allows the user 

to ‘select’ which mode of motion he wants simply by moving the PHANTOM in the 

appropriate way. 

Because bend is controlled by two cables, each actuated by a different motor, changing the 

direction of the bend takes a relatively large amount of time. For example, if the 

manipulator is bent to the left, and we want to bend it to the right, the left cable must first 

be slacked. Then the right cable can be tightened to achieve the desired amount of bend. 

The left cable must be slacked before the right cable is tightened to prevent both cables 

from being tight at the same time. At best, this will result in a great deal of cable slip, and at 

worst, it will cause a cable to snap. Both are undesirable in operation of the manipulator. 

To compensate for this delay and to increase the responsiveness of the manipulator in 

bending, the velocity of the motors was adjusted depending on whether they are tightening 
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the cable or slacking it. If a motor is slacking the cable, it moves very quickly (1200 

pulses/sec) while if it is tightening the cable, it moves more slowly (700 pulses/sec). This 

difference in velocities is instituted to prevent one cable from being tightened before the 

other cable is slacked. Again, this could result in major cable slip or a cable snapping. 

Experimentally, this was found to significantly increase the responsiveness of the 

manipulator. 

2.2 SOFTWARE ARCHITECTURE 

The OpenHaptics Toolkit is an architecture that allows users to develop applications for 

haptic devices such as the PHANTOM Premium. The API is implemented in the C++ 

programming language and allows users to interact with the device by creating and 

displaying environment geometries, setting force and stiffness parameters, and setting up 

callback responses to interactions.  

The motor controllers also provide libraries that an application can use to interface with 

the motors rather than sending ASCII commands directly to the PMX and DMX motors to 

set up a serial port connection. The existing MATLAB keystroke controller creates an object 

that can then call the motor controller dll to control the manipulator through a GUI. This dll 

can also be utilized to send commands to the motors based on input from the PHANTOM. 

We propose two different approaches to creating an interface integrating the PHANTOM 

and the motor controllers.  
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2.2.1 OPTION 1: PORTING MATLAB CONTROLLER TO C++ 

Our first option was to port, or convert, the existing MATLAB controller to C++ and then 

execute PHANTOM calls from within the same C++ environment. To accomplish this, we 

planned to build upon an existing C++ GUI developed by APL for the PMX control using the 

Qt GUI development framework. After this was complete, we planned to port our inverse 

kinematics model code, along with other relevant code, from MATLAB to C++ as well. 

Former students have developed a simplified forward kinematics model of the manipulator 

using RobWorks, a framework for simulation and control of robotics, also written in C++, 

which we hoped to incorporate into our program in this option as part of the visualization.  

2.2.2OPTION 2: CALLING MATLAB FROM C++ 

Our second option was to write the PHANTOM controller in C++ and create a pointer to a 

MATLAB engine session within the program to allow us to pass variables and commands 

from C++ to MATLAB. MATLAB provides a library that allows C or C++ programs to start a 

non-graphical (GUI-less) MATLAB process for using MATLAB as a computational engine. 

This library includes functions to either directly execute command strings in MATLAB or to 

pass buffers back and forth between C/C++ and MATLAB. This method would build upon 

the existing keystroke controller and would allow us to use the inverse kinematics code 

that we would develop in MATLAB.  

2.2.3 FINAL CHOICE 

We experimented with both options and began by porting the keystroke controller to C++. 

We successfully built and integrated the Johns Hopkins CISST libraries into the Qt program 

and were able to initialize and control all axes of the robot via the controller.  
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Concurrently, we developed and prototyped the inverse kinematics model using MATLAB 

for the data collection and calculations. We built upon the MATLAB keystroke controller, 

which contained a rich set of functionalities developed by APL. These include functions for 

rotation calibration, camera calibration and display, and bump tests for finding the hard 

limits of the motors. To allow for full utilization of the keystroke controller, we decided to 

use option 2 (calling MATLAB from C++). This also allowed us to save time by avoiding 

having to port the inverse kinematics and bend calibration functions we developed in 

MATLAB to C++. This proved to be a sound choice as it granted us faster turnover for 

prototyping and testing our algorithms.  

In its current state, the program accepts as input the control mode of the manipulator (1 

for point/click, 2 for continuous control). It initializes the connection to the PHANTOM to 

first set up a virtual scheme in which the tip of the PHANTOM is represented as the tip of 

cone. It then creates a MATLAB process, creates a MATLAB keystroke controller object, 

displays the keystroke control GUI, and initializes the robot by going through a bend 

calibration routine and bump tests for bend and translation motors to find the hard limits. 

Then, depending on the control mode, the program executes the appropriate callback 

functions for the press and the release of the button on the PHANTOM joystick. It logs 

position data from the PHANTOM and manipulator throughout the course of the program 

execution. When the program exists, the manipulator resets to a predetermined, constant 

home position. For more details, please refer to the reference manual. 
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2.3 AUDIO FEEDBACK 

In addition to the haptic feedback built into each interface, alternative forms of sensory 

information for communicating force feedback from the manipulator tip to the userwere 

explored. In teleoperated procedures for dexterous surgical procedures, such as suturing, 

the use of sound has proven to increase both accuracy and precision and presents a useful 

alternative to fully realistic haptic feedback [5]. 

Our primary challenge was to communicate the interaction forces felt at the manipulator 

tip to the user. In order to accurately display end effector forces for truly realistic 

teleoperation, at least six DOF for position and orientation and additional task-specific 

DOFs for tasks such as gripping are required. Currently, the manipulator has no force 

sensors at its tip. It only has force sensors at its base that measure the load on each of the 

cables. Therefore, any force information may only be inferred based on the geometry of the 

cables.  

A scheme was developed to infer the in-bend contact forces by comparing the measured 

load cell forces with the estimated forces from pre-recorded trials. Note that this feedback 

is not true force feedback. That is, the forces read by the load cells are not the forces at the 

tip of the manipulator. As such, this method is able to detect forces that result in changes in 

cable tension, such as pushing the manipulator towards or against its direction of bend if a 

cable is not slack. A threshold was experimentally determined and coded so that for forces 

below that threshold, the system will not emit a sound. This accounts for jitter in the load 

measurement. Above the threshold, the program will emit beeps at a frequency directly 

proportional to the difference between measured and expected forces. 
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2.4 VISUALIZATION 

The use of visual cues was explored for the purpose of giving the user a better idea of his 

position within the lesion. Two methods were developed: a live image overlay and a 

software simulation.  

2.4.1 LIVE IMAGE OVERLAY 

The first method involves overlaying a marker on the live video feed from the camera 

placed to track the calculated position of the manipulator tip. To provide a sense of depth (z 

position) in this bird’s-eye-view perspective, the size of the marker was scaled according to 

the manipulator tip's distance from the camera lens. A bent manipulator rotated 90 degrees 

so that the tip faced the camera, for example, would generate a larger marker than a 

perfectly straight manipulator. 

2.4.2 SOFTWARE SIMULATION 

While useful for validating our kinematics model, a live video overlay would not be feasible 

in a true surgical setting since visualizing the lesion is already a problem. There is no good 

way to obtain a video feed of the surgical site. As such, a software simulation was also 

implemented for visualization. This visualization method tracks the tip position from an 

oblique perspective and displays the marker's position relative to external markers. In the 

program’s current state, there are three fixed markers that represent the positions of the 

posts used for user trials. Rather than using a dot of varying size, the height (z position) of 

the tip is conveyed along with the x and y position as the simulation is fully 3D.This 

implementation is faster than the video overlay, which experienced a small but significant 

lag, and more flexible since it is not line-of-sight dependent. Its flexibility also extends to 
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the fact that, as the workspace changes, a 3D CAD model of the new environment can be 

swapped with the current model in the simulation. 

2.5 USER TRIALS 

To compare the efficacy and intuitiveness of the test mappings, trials (IRB approval 

obtained on 4 April 2012) were conducted on subjects inexperienced with the PHANTOM 

Premium. They used the PHANTOM to control the manipulator. Trials involved 6 subjects 

with no experience in any kind of surgery. The idea is to gauge how easily each subject can 

learn to use the interface effectively, allowing us to measure how intuitive each interface is. 

An apparatus that has three posts of different heights was designed using Autodesk 

Inventor and then 3D printed. On each post is a colored marker in a different orientation 

and at a different height.  

 

 

 

 

 

 

Subjects were asked to move the PHANTOM to cause the manipulator to touch the colored 

markers in a given order. The time it took for the subject to perform this task was recorded. 

Figure 12: Trial phantom and manipulator. Subjects were to touch the 
green post first, followed by red and then black 

Figure 13: CAD model of the trial phantom. Note the 
different heights and orientations of the target holes in 
the posts 
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Subjects were then asked to repeat the task twice for each interface: keyboard control, 

point/click, and continuous control. The times were compared across interfaces. 

 

 

 

 

 

 

 

Fig 14 shows that the keyboard actually seems to be the most efficient method of 

controlling the PHANTOM, followed by continuous control and then point-click. However, 

this ordering is well within the rather large standard deviations of each set of data, 

indicated by the error bars. Further trials are necessary to better understand the 

efficaciousness of the different interfaces. Further, during testing, many of the trials were 

interrupted by program bugs that caused motors to stop moving or to move in unexpected 

ways. Other possible explanations for this discrepancy are poor instructions on how to 

operate in a given interface and also that users are likely much more experienced using a 

keyboard than with a PHANTOM haptic controller.  

Qualitative feedback obtained from users after the trials has allowed for improvements to 

be made to each interface. These include decoupling translation from rotation for the 

Figure 14: Task-completion times with different control schemes for 
inexperienced user trials 
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continuous control interface. In addition, for the point/click interface, the desired position 

of the manipulator was originally based on the final position (judged when the button was 

released) of the PHANTOM relative to its starting position (judged when the button was 

pressed down). Now, the target position of the manipulator is based on the absolute 

location of the PHANTOM when the button is pressed. The absolute coordinate system has 

its origin at the position where the PHANTOM tip was when the stylus button was first 

pressed after the session was initialized. Users also suggested a function for the continuous 

motion interface that allows the position tracking and manipulator movement to be 

paused. These, and other refinements, call for further trials to be done. 

In addition to times, load data, positional data, and motor pulse data were collected from 

the manipulator, and positional and velocity data were collected from the PHANTOM 

throughout the trials. Using these, trajectories and planned paths of the users were 

determined, analyzed, and compared between interfaces. Two corresponding trajectories 

are shown below. 
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Note that the general motions indicated by these trajectories is the same. The manipulator 

is first bent, then translated and then rotated before being bent further and then unbent. 

The scaling between the PHANTOM and manipulator workspaces is clear, especially for 

rotation.  

In addition to inexperienced user trials, we had also hoped to have a surgeon, Dr. Mears, 

use our system and provide us with qualitative feedback. However, due to availability 

issues, it was not possible to do so prior to the poster presentation date.  

Figure 15: PHANTOM stylus tip trajectory (L) and corresponding manipulator trajectory (R) 
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3. CONCLUSION 

We have made significant progress in making the control of the surgical manipulator more 

intuitive and easy to learn. At the beginning of this semester, the only existing method of 

controlling the manipulator was a keyboard/mouse controller. To rotate the manipulator, 

one needed to look at the computer instead of the manipulator itself (an issue that many 

users pointed during trials).By the end of the semester, however, we have developed two 

distinct control schemes: a point/click interface and a continuous motion one. Both of these 

allow the user to focus on the manipulator while moving the PHANTOM Premium to 

control its motion. 

We have also explored several options for enhancing and refining these interfaces. They 

include haptic feedback to allow the user a sense of location within the workspace, audio 

feedback to enhance the user’s sense of collision detection, and a 3D visualization that will 

allow the user to plan movements more accurately and track them as well. This last 

addition will be especially useful for target selection within the point/click interface. 

As we continue with the project, we will work with the interfaces we have developed and 

continue experimenting with different combinations of implementations of the above and 

testing them to find the simplest and most effective interface. Though it is difficult to define 

a finish line as there are many variations and combinations and additions that can be made, 

we have and will continue to make controlling the manipulator as intuitive as possible. 
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4. MANAGEMENT SUMMARY 

The scope of this project was rather expansive. It required working with two pieces of 

hardware, each with its own interface. The PHANTOM’s interface was written in C++ while 

the four motors actuating the manipulator were controlled through MATLAB. An inverse 

kinematic model was needed to allow positional control of the manipulator. Additionally, 

the integration of haptic feedback, the creation of a visualization of manipulator position, 

and the use audio feedback all presented their own challenges during development. 

In the course of working on the project, Piyush was at least partially responsible for every 

aspect of the project. He worked on designing and implementing the interfaces (including 

the inverse kinematic model), integrating haptic feedback into the control, developing 

audio feedback, and helped with user trials. 

Manish also worked on designing and implementing interfaces, including the inverse 

kinematic model. He designed user trials, including obtaining IRB approval and analyzing 

data. He also maintained the website and was responsible for writing the content of this 

report. 

Jessie worked on software development in C++. She worked on porting the MATLAB 

keystroke controller to C++ and on interfacing MATLAB and C++ via the MATLAB engine. 

She also worked on the bend calibration with the kinematics model, developed the 

visualization and audio feedback, oversaw user trials, and worked on the poster.  
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Table 2: Compares initial milestones and final milestones. Also compares planned dates and actual achieved dates 

Initial Milestones 
Planned 

Date 
Accomplished 

Actual 
Date 

Final Milestones 

Get PHANTOM® Premium 
1.5 interfaced and running 

using provided Sensable 
software interface 

20 Feb 
2012 

Yes 
20 Feb 
2012 

Get PHANTOM® Premium 
1.5 interfaced and running 

using provided Sensable 
software interface 

Control software for 
PHANTOM® 

22 Feb 
2012 

Yes 
1 

March 
2012 

Control software for 
PHANTOM® 

Identify/create and 
implement test mappings 

from PHANTOM® to a 
graphical interface of the 

manipulator 

28 
March 
2012 

Yes 
6 

March 
2012 

Identify/create and 
implement test mappings 

from PHANTOM® to a 
graphical interface of the 

manipulator 
Be able to control 

manipulator using 
keystrokes in MATLAB 

28 Feb 
2012 

Yes 
1 

March 
2012 

Be able to control 
manipulator using 

keystrokes in MATLAB 

Draft and submit IRB 
proposal for testing 

7 March 
2012 

Yes 
7 

March 
2012 

Draft and submit IRB 
proposal for testing 

Develop inverse 
kinematics model  

9 March 
2012 

Yes 
9 

March 
2012 

Develop inverse 
kinematics model  

Develop initial phantom-
manipulator mapping 

schemes incorporating 
haptic feedback on paper 

29 Feb 
2012 

Yes 
9 

March 
2012 

Develop initial 
PHANTOM®-manipulator 

mapping schemes 
incorporating haptic 

feedback on paper 

  Yes 
12 

April 
2012 

Convert MATLAB interface 
to C++ 

  Yes 
5 April 
2012 

Calibrate DMX and PMX 
Motors 

Develop dynamic 3D 
visualization of the 

manipulator (eventually to 
become part of PHANTOM® 

GUI controller) 

28 
March 
2012 

Yes 
8 May 
2012 

Develop dynamic 3D 
visualization of the 

manipulator (eventually to 
become part of PHANTOM® 

GUI controller) 

  Yes 
8 April 
2012 

Verify inverse kinematics 
model 

Control manipulator 
using PHANTOM® by 

implementing mapping 
schemes and be able to 

gather 

28 
March 
2012 

Yes 
19 

April 
2012 

Control manipulator using 
PHANTOM® by 

implementing mapping 
schemes and be able to 

gather 
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positioning/movement 
data from manipulator and 

import into MATLAB 

positioning/movement 
data from manipulator and 

import into MATLAB 
Incorporate force 

feedback into mapping 
schemes 

3 April 
2012 

Yes 
15 

April 
2012 

Incorporate force feedback 
into mapping schemes 

Complete preliminary 
testing and refine mapping 

scheme as necessary 

17 April 
2012 

Yes 
21 

April 
2012 

Complete preliminary 
testing and refine mapping 

scheme as necessary 
Have surgeon provide 
qualitative feedback 

20 April 
2012 

No  
Have surgeon provide 
qualitative feedback 

Testing and trials with 
inexperienced users 

27 April 
2012 

Yes 
9 May 
2012 

Testing and trials with 
inexperienced users 

Poster presentation 
10 May 

2012 
Yes 

10 
May 
2012 

Poster presentation 

Table 2 shows the comparison between our initial stated milestones and our final 

milestones. In the course of the project, several new milestones were added, including 

porting the MATLAB controller to C++, calibrating the DMX and PMX motors, and verifying 

the inverse kinematic model. Additionally, while some milestones were met by their 

planned dates, others took far longer. These tasks, such as developing the 3D visualization, 

took longer than expected for a variety of reasons. In some cases, the development of a 

component of the interface needed to be delayed until later in the process that was 

originally anticipated. In other cases, the fulfillment of a milestone was far more 

complicated than originally anticipated. 
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Table 3: Minimum, expected, and maximum deliverables 

Minimum Deliverables 

Develop well-defined and reliable interface coupling phantom and 
manipulator, incorporating force feedback. Well-defined here means all 

manipulations of the phantom along each degree of freedom has a 
specified mapping to the possible motion by the manipulator has a 

specified mapping to the phantom. By reliable, we mean that the 
manipulator should always respond in the same predictable fashion to 

movement in the phantom  

Complete! 

Develop a low-level inverse kinematic model utilizing simplifying 
assumptions (namely, that all joint angles are the same). Complete! 

Expected Deliverables 

Develop and incorporate a 3D visualization of the manipulator for testing 
and training purposes. Complete! 

Increase interaction force estimation to enhance/increase haptic 
feedback to the user. Complete! 

Schedule and document intermittent system trials with at least one 
mentor on a bi-weekly (i.e. every other week) basis to offer feedback on 

progress. 
Complete! 

Define and run quantifiable trials having inexperienced subjects learn to 
operate manipulator using the PHANTOM® interface, and perform a 
simple set of tasks. Compare multiple sets of scaling parameters and 

gestures to find best one for the specified task. 

Complete! 

Maximum Deliverables 

Schedule and document a final system trial with a collaborating surgeon 
to provide qualitative feedback for future system enhancements In Progress 

Draft a preliminary conference paper documenting the use of this haptic 
interface to control the manipulator. Complete! 

Draft a preliminary conference paper describing outcome of user trials. Complete! 

 

With respect to our deliverables, shown in Table 3, all our minimum and expected 

deliverables were achieved. We have also completed two of our three maximum 

deliverables, namely drafting conference papers describing our interfaces and the outcome 

of user trials. However, due to availability issues, we have not been able to garner 

qualitative feedback from Dr. Mears. 
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We plan to continue work on the project through the summer and potentially beyond. 

Further steps that will be taken include scheduling a meeting with Dr. Mears to get his 

feedback concerning the PHANTOM-manipulator interfaces. Additionally, haptic feedback 

will be refined to better relay collision detection to the user. We also plan to experiment 

with combined PHANTOM and keyboard control, voice control, and other additions to our 

interface to make it even more intuitive. We also plan to make our 3D visualization more 

sophisticated. This could involve showing a planned trajectory of the manipulator’s 

movement for a certain target position. It may also involve having an actual simulation of 

the entire manipulator body. 

In the course of the project, we learned the design process is full of unexpected pitfalls. 

Tasks that seem simple initially only become increasingly difficult as one makes progress 

through the details of them. We learned that IRB approval is an intensive process with 

much paperwork. We confirmed our suspicion that MATLAB is a much simpler language to 

code in than C++ and learned that simple solutions are sometimes the best solutions. For 

example, while developing our inverse kinematic model, we spent many weeks working 

with a complex forward kinematic model trying to estimate joint angles based on desired 

position. However, we found that using experimental results and a lookup table via 

interpolation worked well in controlling the manipulator. It was also far simpler and more 

efficient to implement. We learned how to interface C++ and MATLAB via the MATLAB 

engine. This proved to be very helpful as we could access the MATLAB code to move the 

manipulator from within the PHANTOM control interface. We were also able to personally 

experience the benefit of force feedback in a control interface. No amount of paper reading 

could substitute for feeling the difference between trying to rotate the manipulator with 
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and without the spring force in our continuous motion interface. Finally, we learned that 

while interfaces are simple to develop conceptually, they are much more difficult to 

actually implement because of the host of issues that must be considered and problems 

that can arise. 
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Chapter 1  

 
User API Main Page 
 
1.1 Introduction  
 
The JHU/APL snake manipulator can currently be controlled using three 
different modes of operation: separate control of each axis (rotation, 
translation, and bend cables) using the MATLAB keystroke controller, a 
point-and-click method that moves the manipulator to the PHANTOM® 

Premium haptic device’s position, and a continuous mode where the 
manipulator tracks the PHANTOM position.  
 
Researchers at the Johns Hopkins Applied Physics Lab, in collaboration 
with the Johns Hopkins University have developed the MATLAB 
keystroke controller. The point-and-click and continuous interfaces, 
developed as part of the Haptic Interface for Surgical Manipulator 
System’s Spring 2012 Computer-Integrated Surgery II project, is a 
Win32 program developed in Visual Studio 2008 written in C++. It 
interfaces with the PHANTOM’s API, the Open Haptics API, and the 
MATLAB engine library to call functions in MATLAB, such as one that 
initializes the keystroke controller.  
 

1.2 Functional Overview 
 
The manipulator can bend left and right in a single plane. It is actuated 
by two wire cables threaded through the hollow cannula of the 
manipulator, which pull to bend the end effector. The two cables are 
actuated by 2 PMX stepper motors from Arcus Technologies, Inc., which 
interface with the PC via USB. The manipulator is mounted on a Y-  
stage, which is actuated by a DMX integrated stepper motor controller. 
This unit allows for rotation and translation.  
 



1.3 Instructions  
 
Modify the state in the main.cpp file in the Visual Studio solution to 
change the control mode. Set state = 1 to enable point-and-click and 
state = 2 to enable continuous motion control. Build the Visual Studio 
solution in either Debug or Release Academic Edition, which is 
necessary for using the Open Haptics API.  
 
To run the program, make sure first that a ManualControlGUI (the 
MATLAB manipulator keystroke controller) instance does not currently 
exist in the MATLAB workspace. It is recommended that the user close 
all sessions of MATLAB to delete any current ManualControlGUI 
instances.  
 
Turn on the power for both the PMX and DMX motor controllers and for 
the PHANTOM. The user can verify that the PHANTOM is responsive and 
oriented correctly if he or she suspects that it is not, by running the 
PhantomTest program packaged with the PHANTOM driver software to 
view each of its encoder inputs.  
 
Run the main.cpp program file. Wait for a new MATLAB process 
window to pop up. The manipulator will then do a bump test of the PMX 
motors, a translational bump test, and automatic bend calibration of 
each cable. Wait until the motors have stopped moving. A GUI window 
with the MATLAB keystroke controller should pop up; if it does not, it 
may mean that the program was not able to connect to the serial port 
properly. Close MATLAB, stop the C++ program, and toggle the power 
for the manipulator to reset the connection. You may also need to 
disconnect or reconnect the FireWire camera USB cable, but this is 
usually not necessary. If the expected events happen in the correct 
order, the PHANTOM is now ready to control the manipulator tip 
position using one of the abovementioned modes.  
 
Note that if at any point you notice that either one of the PMX motors 
has moved all the way back on its axis (towards each motor’s respective 
J+ direction) but is unable to achieve full bend, this may either mean 
that the cable has slipped and needs to be re-tensioned. The MATLAB 
script AutomaticBendCalibration is called every time the C++ program 



is run, so the user does not need to worry about manually re-calibrating 
bend after adjusting cable tensions or replacing cables.  
 
To end the program, close MATLAB. The manipulator will automatically 
return to its home position by rotating to its start position so that the 
cables will not be twisted the next time the program runs. It will also 
slacken all cables and translate to the home position. Close the C++ 
program and shut off power to the manipulator and to the PHANTOM. 
Failure to do so may cause the hardware to overheat.  
 

1.3.1 Point-and-Click Mode 
 
This mode was implemented using position control. The user specifies 
an (x, y, z) position in Cartesian coordinates by pressing the button on 
the PHANTOM stylus and releasing at when the stylus tip is at the 
desired target position. Note that every point in the PHANTOM 
workspace directly maps, after being scaled by a configurable scaling 
factor, to a point in the manipulator workspace.  
 
Please make sure that the previous command has finished executing 
(after all the motors have stopped moving) before executing the next 
command.  

 

Figure 1: Point/click interface 



1.3.2 Continuous Mode 
 
In continuous mode, the manipulator tracks the position of the 
PHANTOM’s rotation and translation when the stylus button is not held 
down. To begin, first press the button to activate the continuous mode. 
To bend the cable, hold down the stylus button and move the PHANTOM 
along the PMX cable axes (as currently indicated by black arrows on 
blue tape on the manipulator body). To rotate the manipulator, trace out 
steady circles in either clockwise or counterclockwise directions 
without pressing the button. To translate, move the stylus backwards 
and forwards without pressing the button. 
 
Based on suggestions from subject trials, we de-coupled the rotational 
and translational degrees of freedom. Therefore, when the user is trying 
to only rotate, the manipulator should not experience unwanted 
translation and vice versa.  

 
 

 
 
 
 
 

 
 

 
 

Figure 2: Continuous motion interface 



Chapter 2 

 
User API Function Listing  
 
 
This section contains a selected list of functions and accompanying brief 
descriptions. 
 
 

File Name Input Output 
AutomaticBendCalibrati
on≬ 

  

AutomaticBendCalibration automatically loads the bend calibration table and 
updates motor positions so they are correct for the current cable lengths based on 
load-cell values 
BendCalPointCapture≬   

BendCalPointCapture allows for the experimental determination of the range of 
bend of the manipulator based on user input. Additionally, PX and PY of the relevant 
motor are stored as are the loads on both load cells at that position 

Cart2Joint 4: a, b, c, obj 4: pulseBendX, 
pulseBendY, theta, y 

Given a Cartesian point, Cart2Joint outputs the motor pulses in X and Y direction 
needed to achieve position as well as rotation in degrees and translation from home 
position 
Cart2Motion 5: xM, yM, zM, obj, varargin None 

Given Cartesian coordinates in manipulator space, Cart2Motion calls the appropriate 
functions to move the manipulator. Also logs the previous manipulator position 
Cart2Pulse 5: a, b, c, obj, varargin 4: pulseBendX, 

pulseBendY, 
pulseRotation, 
pulseTranslation 

Given the desired Cartesian coordinates, Cart2Pulse calls the appropriate functions 
to calculate commands that should be sent to the motors 
Cart2Speed 6: a, b, c, velA, velB, velC 2: 

scaledPulseSpeedThe
ta, scaledPulseSpeedY 

Given the current location and velocity of the PHANTOM, Cart2Speed outputs 
commands that should be sent to the motor controllers in terms of motor speeds 
 



getForces 1: obj 4: x_volt_e, y_volt_e, 
x_volt_a, y_volt_a 

Given the ManualControlGUI object, getForces finds the expected and actual forces 
of the load cells in the manipulator in millivolts 

initializeMotors 1: obj None 

Given the ManualControlGUI object, initializeMotors sets PX for all motors to 0 and is 
run to set the home position at the beginning of a session 
Joint2Pulse 2: theta, y 2: pulseRotation, 

pulseTranslation 
Given the output of Cart2Joint, Joint2Pulse outputs commands that should be sent to 
the motor controllers in terms of motor pulses 

load2freq 4: x_volt_e, y_volt_e, x_volt_a, 
y_volt_a 

None 

Given the expected and actual x and y loads, load2freq calculates the frequency that 
the audio feedback should be played at based on the differences between actual and 
expected 
 

main* 

Main is the main program and initializes the PHANTOM and MATLAB keystroke 
controller. It also interfaces the PHANTOM with the controller via the MATLAB 
engine 

Pulse2Motion 5: pulseBendX, pulseBendY, 
pulseRotation, pulseTrans, obj 

None 

Given the desired number of motor pulses to send to each motor, Pulse2Motion 
sends that number of motor pulses to each motor. 

resetMotors 1: obj None 

Given the ManualControlGUI object, resetMotors resets both the PMX and DMX 
motors to their home positions 
TransBumpTest≬   

TransBumpTest moves the manipulator as far back as it can go and then moves it 
forward by a set amount to send it to the home position 

visualization_setup≬   

visualization_setup plots the 3D position of the CAD trial phantom posts for use in 
the visualization 

writeData 2: filename, data None 

Given a filename and data, writeData writes the data stored in ‘data’ along with the 
clock time to a text file for later analysis 
*main.cpp is a C++program—all others are located in m-files of same name 
≬These programs are all MATLAB scripts 

 


