

C o m p u t e r I n t e g r a t e d S u r g e r y I I , S p r i n g 2 0 1 2 , J o h n s H o p k i n s U n i v e r s i t y

Haptic Interface for Surgical Manipulator
User Manual, v 1.00
Manish Mehta, Piyush Poddar, and Jessie Young
May 10, 2012

Group 5

08 Fall

Chapter 1

User API Main Page

1.1 Introduction

The JHU/APL snake manipulator can currently be controlled using three
different modes of operation: separate control of each axis (rotation,
translation, and bend cables) using the MATLAB keystroke controller, a
point-and-click method that moves the manipulator to the PHANTOM®

Premium haptic device’s position, and a continuous mode where the
manipulator tracks the PHANTOM position.

Researchers at the Johns Hopkins Applied Physics Lab, in collaboration
with the Johns Hopkins University have developed the MATLAB
keystroke controller. The point-and-click and continuous interfaces,
developed as part of the Haptic Interface for Surgical Manipulator
System’s Spring 2012 Computer-Integrated Surgery II project, is a
Win32 program developed in Visual Studio 2008 written in C++. It
interfaces with the PHANTOM’s API, the Open Haptics API, and the
MATLAB engine library to call functions in MATLAB, such as one that
initializes the keystroke controller.

1.2 Functional Overview

The manipulator can bend left and right in a single plane. It is actuated
by two wire cables threaded through the hollow cannula of the
manipulator, which pull to bend the end effector. The two cables are
actuated by 2 PMX stepper motors from Arcus Technologies, Inc., which
interface with the PC via USB. The manipulator is mounted on a Y-
stage, which is actuated by a DMX integrated stepper motor controller.
This unit allows for rotation and translation.

1.3 Instructions

Modify the state in the main.cpp file in the Visual Studio solution to
change the control mode. Set state = 1 to enable point-and-click and
state = 2 to enable continuous motion control. Build the Visual Studio
solution in either Debug or Release Academic Edition, which is
necessary for using the Open Haptics API.

To run the program, make sure first that a ManualControlGUI (the
MATLAB manipulator keystroke controller) instance does not currently
exist in the MATLAB workspace. It is recommended that the user close
all sessions of MATLAB to delete any current ManualControlGUI
instances.

Turn on the power for both the PMX and DMX motor controllers and for
the PHANTOM. The user can verify that the PHANTOM is responsive and
oriented correctly if he or she suspects that it is not, by running the
PhantomTest program packaged with the PHANTOM driver software to
view each of its encoder inputs.

Run the main.cpp program file. Wait for a new MATLAB process
window to pop up. The manipulator will then do a bump test of the PMX
motors, a translational bump test, and automatic bend calibration of
each cable. Wait until the motors have stopped moving. A GUI window
with the MATLAB keystroke controller should pop up; if it does not, it
may mean that the program was not able to connect to the serial port
properly. Close MATLAB, stop the C++ program, and toggle the power
for the manipulator to reset the connection. You may also need to
disconnect or reconnect the FireWire camera USB cable, but this is
usually not necessary. If the expected events happen in the correct
order, the PHANTOM is now ready to control the manipulator tip
position using one of the abovementioned modes.

Note that if at any point you notice that either one of the PMX motors
has moved all the way back on its axis (towards each motor’s respective
J+ direction) but is unable to achieve full bend, this may either mean
that the cable has slipped and needs to be re-tensioned. The MATLAB
script AutomaticBendCalibration is called every time the C++ program

is run, so the user does not need to worry about manually re-calibrating
bend after adjusting cable tensions or replacing cables.

To end the program, close MATLAB. The manipulator will automatically
return to its home position by rotating to its start position so that the
cables will not be twisted the next time the program runs. It will also
slacken all cables and translate to the home position. Close the C++
program and shut off power to the manipulator and to the PHANTOM.
Failure to do so may cause the hardware to overheat.

1.3.1 Point-and-Click Mode

This mode was implemented using position control. The user specifies
an (x, y, z) position in Cartesian coordinates by pressing the button on
the PHANTOM stylus and releasing at when the stylus tip is at the
desired target position. Note that every point in the PHANTOM
workspace directly maps, after being scaled by a configurable scaling
factor, to a point in the manipulator workspace.

Please make sure that the previous command has finished executing
(after all the motors have stopped moving) before executing the next
command.

Figure 1: Point/click interface

1.3.2 Continuous Mode

In continuous mode, the manipulator tracks the position of the
PHANTOM’s rotation and translation when the stylus button is not held
down. To begin, first press the button to activate the continuous mode.
To bend the cable, hold down the stylus button and move the PHANTOM
along the PMX cable axes (as currently indicated by black arrows on
blue tape on the manipulator body). To rotate the manipulator, trace out
steady circles in either clockwise or counterclockwise directions
without pressing the button. To translate, move the stylus backwards
and forwards without pressing the button.

Based on suggestions from subject trials, we de-coupled the rotational
and translational degrees of freedom. Therefore, when the user is trying
to only rotate, the manipulator should not experience unwanted
translation and vice versa.

Figure 2: Continuous motion interface

Chapter 2

User API Function Listing

This section contains a selected list of functions and accompanying brief
descriptions.

File Name Input Output
AutomaticBendCalibrati
on≬

AutomaticBendCalibration automatically loads the bend calibration table and
updates motor positions so they are correct for the current cable lengths based on
load-cell values
BendCalPointCapture≬

BendCalPointCapture allows for the experimental determination of the range of
bend of the manipulator based on user input. Additionally, PX and PY of the relevant
motor are stored as are the loads on both load cells at that position

Cart2Joint 4: a, b, c, obj 4: pulseBendX,
pulseBendY, theta, y

Given a Cartesian point, Cart2Joint outputs the motor pulses in X and Y direction
needed to achieve position as well as rotation in degrees and translation from home
position
Cart2Motion 5: xM, yM, zM, obj, varargin None

Given Cartesian coordinates in manipulator space, Cart2Motion calls the appropriate
functions to move the manipulator. Also logs the previous manipulator position
Cart2Pulse 5: a, b, c, obj, varargin 4: pulseBendX,

pulseBendY,
pulseRotation,
pulseTranslation

Given the desired Cartesian coordinates, Cart2Pulse calls the appropriate functions
to calculate commands that should be sent to the motors
Cart2Speed 6: a, b, c, velA, velB, velC 2:

scaledPulseSpeedThe
ta, scaledPulseSpeedY

Given the current location and velocity of the PHANTOM, Cart2Speed outputs
commands that should be sent to the motor controllers in terms of motor speeds

getForces 1: obj 4: x_volt_e, y_volt_e,
x_volt_a, y_volt_a

Given the ManualControlGUI object, getForces finds the expected and actual forces
of the load cells in the manipulator in millivolts

initializeMotors 1: obj None

Given the ManualControlGUI object, initializeMotors sets PX for all motors to 0 and is
run to set the home position at the beginning of a session
Joint2Pulse 2: theta, y 2: pulseRotation,

pulseTranslation
Given the output of Cart2Joint, Joint2Pulse outputs commands that should be sent to
the motor controllers in terms of motor pulses

load2freq 4: x_volt_e, y_volt_e, x_volt_a,
y_volt_a

None

Given the expected and actual x and y loads, load2freq calculates the frequency that
the audio feedback should be played at based on the differences between actual and
expected

main*

Main is the main program and initializes the PHANTOM and MATLAB keystroke
controller. It also interfaces the PHANTOM with the controller via the MATLAB
engine

Pulse2Motion 5: pulseBendX, pulseBendY,
pulseRotation, pulseTrans, obj

None

Given the desired number of motor pulses to send to each motor, Pulse2Motion
sends that number of motor pulses to each motor.

resetMotors 1: obj None

Given the ManualControlGUI object, resetMotors resets both the PMX and DMX
motors to their home positions
TransBumpTest≬

TransBumpTest moves the manipulator as far back as it can go and then moves it
forward by a set amount to send it to the home position

visualization_setup≬

visualization_setup plots the 3D position of the CAD trial phantom posts for use in
the visualization

writeData 2: filename, data None

Given a filename and data, writeData writes the data stored in ‘data’ along with the
clock time to a text file for later analysis
*main.cpp is a C++program—all others are located in m-files of same name
≬These programs are all MATLAB scripts

