
Pergamon ooo5-1098(95)00120-4

Auromarica. Vol. 31, No. 12, pp. 1691-1724. 1995
Copyright 0 1995 Elsevier Science Ltd

Prmted in Great Britain. All rights reserved
lms-1098/95 $9.50 f0.00

Nonlinear Black-box Modeling in System Identification: a

Unified Overview*

JONAS SJijBERG,t QINGHUA ZHANG,$ LENNART LJUNG,t ALBERT BENVENISTE,$
BERNARD DELYON,S PIERRE-YVES GLORENNEC,§ HAKAN HJALMARSSONt and

ANATOLI JUDITSKYS

Model structures, algorithms and recommendations are presented in a
general framework and user’s questions for identification of dynamical

systems are specially addressed.

Key Words-Nonlinear systems: model structures; parameter estimation: wavelets: neural networks:
fuzzy modeling

Abstract-A nonlinear black-box structure for a dynamical
system is a model structure that is prepared to describe
virtually any nonlinear dynamics. There has been con-
siderable recent interest in this area, with structures based on
neural networks, radial basis networks, waveiet networks and
hinging hyperplanes, as well as wavelet-transform-based
methods and models based on fuzzy sets and fuzzy rules. This
paper describes all these approaches in a common
framework, from a user’s perspective. It focuses on what are
the common features in the different approaches, the choices
that have to be made and what considerations are relevant
for a successful system-identification application of these
techniques. It is pointed out that the nonlinear structures can
be seen as a concatenation of a mapping form observed data
to a regression vector and a nonlinear mapping from the
regressor space to the output space. These mappings are
discussed separately. The latter mapping is usually formed as
a basis function expansion. The basis functions are typically
formed from one simple scalar function, which is modified in
terms of scale and location. The expansion from the scalar
argument to the regressor space is achieved by a radial- or a
ridge-type approach. Basic techniques for estimating the
parameters in the structures are criterion minimization, as
well as two-step procedures, where first the relevant basis
functions are determined, using data, and then a linear
least-squares step to determine the coordinates of the
function approximation. A particular problem is to deal with
the large number of potentially necessary parameters. This is
handled by making the number of ‘used’ parameters
considerably less than the number of ‘offered’ parameters, by
regularization, shrinking, pruning or regressor selection.

*Received 19 October 1994; revised 21 March 1995;
received in final form 23 June 1995. The original version of
this paper was presented as an invited survey paper at the
10th IFAC Symposium on System Identification, which was
held in Copenhagen, Denmark during 4-6 July 1994. The
Published Proceedings of this IFAC meeting may be ordered
from: Elsevier Science Limited, The Boulevard, Langford
Lane, Kidlington, Oxford OX5 IGB, U.K. This paper was
recommended for publication in revised form by Guest
Editors Torsten SSderstrGm and Karl Johan Astrom.
Corresponding author: Dr Jonas Sjoberg. Tel. + 41 1
632 3111; Fax +41 1632 1222; E-mail
sjoberg@tech.chem.ethz.ch.

t Department of Electrical Engineering, Linkoping Uni-
versity, S-581 83 LinkSping, Sweden.

SIRISA/INRIA, Campus de Beaulieu, 35042 Rennes
Cedex, France.

§ INSA. 20 avenue des Buttes de Coesmes. 35045 Rennes
Cedex, France.

1. INTRODUCTION

The key problem in system identification is to
find a suitable model structure within which a
good model is to be found. Fitting a model
within a given structure (parameter estimation)
is in most cases a lesser problem. A basic rule in
estimation is not to estimate what you already
know. In other words, one should utilize prior
knowledge and physical insight about the system
when selecting the model structure. It is
customary to distinguish between three levels of
prior knowledge, which have been ‘color-coded’
as follows.

l White-box models. This is the case when a
model is perfectly known; it has been
possible to construct it entirely from prior
knowledge and physical insight.

l Grey-box models. This is the case when some
physical insight is available, but several
parameters remain to be determined from
observed data. It is useful to consider two
subcases.

6)

(ii)

Physical modeling. A model structure
can be built on physical grounds, which
has a certain number of parameters to
be estimated from data. This could, for
example, be a state-space model of
given order and structure.
Semiphysical modeling. Physical insight
is used to suggest certain nonlinear
combinations of measured data signal.
These new signals are then subjected to
model structures of black-box character.

l Black-box models. No physical insight is
available or used, but the chosen model
structure belongs to families that are known

1691

1692

to have good flexibility
‘successful in the past’.

1.1. Black-box models
For black-box linear models,

J. Sjijberg et al.

and have been

the task is really
to describe/approximate the system’s frequency
response (or impulse response), which is just a
mapping from R to [wP” (where p is the number
of outputs and m the number of inputs). With
the typically ‘nice’ such functions that dominate
applications, this is a rather modest approxima-
tion problem, which has been extensively and
successfully handled within some well known
linear black-box structures. Some typical such
structures will be reviewed in Section 3.1.

The nonlinear black-box situation is much
more difficult. The main reason is that nothing is
excluded, and a very rich spectrum of possible
model descriptions must be handled. In this
paper we shall discuss the possibilities and
limitations with such nonlinear black-box iden-
tification. The area is quite diverse, and covers
topics from mathematical approximation theory,
via estimation theory and non-parameteric
regression, to algorithms and currently much
discussed concepts like neural networks, wauelets
and fuzzy models. There are important links to
classical statistical approaches in non-parametric
regression and density estimation, with kernel
methods and nearest-neighbor techniques. There
is also a rich literature on the subject. Among
many general treatments we may refer to books
on neural networks, such as Kung, (1993) and
Haykin (1994), to books on fuzzy models, like
Brown and Harris (1994) and Wang (1994), to
books and surveys on non-parametric regression
and density estimation, like Stone (1982),
Silverman (1986) and Devroye and Gyorfi
(1985), and to background material on wavelets
and multiresolution techniques, like Meyer
(1990), Daubechies (1992) Chui (1992) and
Ruskai et al. (1992).

1.2. Organization of this paper
This paper will take the position of a practical

user of nonlinear black-box models, describe
what are the essential features of the available
approaches, and discuss the issues he or she most
deal with to successfully arrive at a good model
from given observed data. The paper has a
companion in this special issue (Juditsky et al.,
1995) that complements the material with more
theoretical aspects. Each of the two papers can,
however, be read independently.

The present paper is organized as follows. We
shall first look into the modeling question and
find that the general nonlinear black-box model

can be seen as a concatenation of a mapping
from past observed data to a regressor space,
and from there by a nonlinear, function
expansion type, mapping to the space of the
system’s outputs, This is done in Section 2. The
two mappings are then dealt with separately in
Sections 3 and 4 respectively.

After an intermission to check our bearings,
we then discuss basic model properties in Section
6, giving important insights in how to deal with
the potentially large number of parameters
required to handle arbitrary nonlinear dynamical
systems. Estimation techniques based on crite-
rion optimization and direct methods are dealt
with in Sections 7 and 8, respectively. How fuzzy
modeling fits into our general framework is then
discussed in Section 9. Several numerical
examples with real data are given in Section 10,
and the user choices and attitudes are discussed
in Section 11.

1.3. Glossary
We take in this paper a rather classical,

statistical approach to the problem. Many earlier
treatments, in particular on neural networks and
fuzzy models, have had other perspectives, and
developed special terms for traditional statistical
concepts. We therefore provide a glossary of
commonly used terms:

estimate = train, learn;
validate = generalize;
model structure = network;
estimation data = training set;
validation data = generalization set;
overfit = overtraining.

2. NONLINEAR BLACK-BOX STRUCTURES

The system identification problem is as
follows: We have observed inputs u(t) and
outputs y(t) from a dynamical system

u’ = [u(l) U(2) . . . u(t)], (1)

y’= [Y(l) Y(2) . . * YG)l* (2)

We are looking for a relationship between past
observations [u’-I, y’-‘1 and future outputs y(t):

y(t) = g(P, y’-1) + u(t). (3)

The additive term u(t) accounts for the fact that
the next output y(t) will not be an exact function
of past data. However, a goal must be that u(t) is
small, so that we may think of g(u’-‘, y’-‘) as a
good prediction of y(t) given past data.

Equation (3) models general discrete-time
dynamic systems. Since static systems can be
viewed as a particular case of dynamic systems,

Nonlinear black-box modeling in system identification 1693

we mainly focus on dynamic systems in this
paper.

Now, how do we find the function g in (3)? In
some way or another we have to search for it
within a family of functions. Let us parameterize
this function family with a finite-dimensional
parameter vector 8:

g(uf-~‘, yf-‘, e>. (4)

Parameterizing the function g with a finite-
dimensional vector 8 is usually an approxima-
tion. Indeed, the main topic of this paper is how
to find a good such parameterization and how to
deal with it. Once we have decided upon such a
structure and have collected a data set [#, y”],
the quality of 8 can naturally be assessed by
means of the fit between the model and the data
record:

(5)
[=I

Now, the model structure family (4) is really

The norm and the actual way of achieving or
trying to achieve the minimum in 0 may differ,

too general, and it turns out to be useful to write

but most system identification schemes follow

g as a concatenation of two mappings: one that

this concept.

takes the increasing number of past observations
u’, y’ and maps them into a finite-dimensional
vector q(t) of fixed dimension and one that takes
this vector to the space of the outputs:

g(u’-‘, y’-‘, 0) = g(cp(t), e), (6)
where

cp(t) = (p(u’-1, y’-1). (7)

We shall call this vector the regression vector,
and its components will be referred to as
regressors. We also allow the more general case
that the formation of the regressors is itself
parameterized:

qo(t) = (PV’, y’-‘2 771, (8)

which we write for short as cp(t, 77). Sometimes
77 = 8, i.e. the regression vector depends on all
the model parameters. For simplicity, the extra
argument 7 will, however, be used explicitly only
when essential for the discussion.

The choice of the nonlinear mapping in (4) has
thus been decomposed into two partial problems
for dynamical systems:

(i) how to choose the regression vector q(t)
from past inputs and outputs;

(ii) how to choose the nonlinear mapping g(cp)
from the regressor space to the output space.

We shall address the possibilities for these two
choices in the following two sections.

3. REGRESSORS: POSSIBILITIES

To get some guidance about the choice of
regressors, let us first review the linear case.

3.1. A review of linear black-box models
The simplest dynamical model is the finite

impulse response (FIR) model:

y(t) = B(q)u(t) + e(t)

= b,u(t - 1) +. . . + b,u(t - n) + e(t). (9)

Here we have used q to denote the shift
operator, so B(q) is a polynomial in 4-l. The
corresponding predictor j(t 1 0) = B(q)u(t) is
thus based on the regression vector

The linear black-box structures used in
practice are all variants of (9) using different
ways of picking up ‘poles’ of the system and
different ways of describing the noise charac-
teristics. The common models used can all, as in

q(t) = [u(t - 1)

Ljung (1987), be summarized by the general

u(t - 2)

family

. . . u(t - n)].

As IZ tends to infinity, we may describe the
dynamics of all (‘nice’) linear systems. However,
the character of the noise term e(t) will not be
modeled in this way.

A(q)y(f) =
B(q)
-u(t) +

C(q)
F(q)

~ e(f).
D(q) (10)

The special cases of (10) are known as the
Box-Jenkins (BJ) model (A = l), the ARMAX
model (F = D = l), the output-error (OE) model
(A = C = D = 1) and the ARX model (F = C =
D = 1). The predictor associated with (10) can
be given in ‘pseudo-linear’ regression form as
(see equation (3.114) in Ljung and Soderstrom,
1983)

y^(t 1 e) = e’(p(t, 0). (11)

The regressors, i.e. the components of ~(t, e),
are in this general case given by

(9

(ii)

(iii)

(iv)

u(t - k) (associated with the B polynomial);

y (t - k) (associated with the A polynomial);

yU(t - k 1 O), simulated outputs from past u
only (associated with the F polynomial);

c(t - k) = y(t - k) - j(t - k 1 O), prediction
errors (associated with the C poly-
nomial);

1694 J. Sjijberg et al.

(v) ;$n-- k) = y(t - k) - F,(t - k 1 O), simula- model (14) is equal to jU(t 1 0) if all measured
errors (associated with the D outputs y(t - k) in the regressors are replaced by

polynomial). the last computed yu(t -k 1 f3).

It should be remarked that in the case A # 1
‘simulated output’ refers to the quantity

A(q)y(t).
A linear state-space model in predictor form,

Following the nomenclature for linear models,
it is natural to coin similar names for nonlinear
models. This is well in line with, for example,
Chen et al. (1990) and Chen and Billings (1992).
We could thus distinguish between the following:

x(t + 1) = Ax(t) + Bu(t) + K(y(t) - Cx(t)),

y(t) = Cx(t) + e(t),

(12)
NFIR models, which use only u(t - k) as
regressors;

can also be described as a pseudo-linear
regression (ll), with the predictor p (t 1 f3) =
Cx(t), and the states x being the regressors. Note
that each component in x(t) is obtained by linear
filtering of past inputs and outputs, through
filters that depend on 8 (i.e. the matrices A, B, C
and K):

NARX models, which use u(t - k) and
y(t - k) as regressors;

NOE models, which use u (t - k) and 9Jt -
k I 0) as regressors; in this case the output of
the model is also 9 (t I 0);

xi(t) = Fr(q, e)u(t) + F:(q, e)y(t). (13)

If K = 0 then Fj’(q, 0) = 0, and we have a model
of output-error type.

NARMAX models, which use u(t - k),
y (t - k) and s(t - k 1 19) as regressors;

The essential difference between the state-
space regressors and the input-output regressors
described earlier is that the latter contain blocks
of the same regressor, time-shifted a number of
steps. This is also characteristic of state-space
models of echelon type.

NBJ models, which use u(t - k), y^(t -k 1 f3),
E(t - k I 0) and q,(t - k I 0) as regressors; in
this case the simulated output y^,, is obtained as
the output from (14), by using the same
structure, replacing e and E,, by zeros in the
regression vector cp(t, e);

State-space regressors are thus less restricted
in their internal structure. This implies that it
might be possible to obtain a more efficient
model with a smaller number of regressors by
using a state-space model. State-space models in
connection with neural nets are discussed in, for
example, Matthews (1992), Nerrand et al., (1993)
and Rivals (1995).

Nonlinear state-space models, which use past
components of virtual outputs, i.e. signal
values at internal nodes of the network (see
e.g. Fig. 3 below) that do not correspond to
the output variable.

In Narendra and Parthasarathy, (1990) another
notation is used for the same models when used
in conjunction with neural networks. The NARX
model is called the series-parallel model and the
NOE is called the parallel model.

3.2. Regressors for nonlinear black-box
dynamical models

The described regressors give all the necessary
freedom for the linear black-box case, and it is
natural to use these also in the nonlinear case.
We thus work with structures of the kind

90 I 6) = g(cpwj a (14)

where g is some nonlinear function para-
meterized by 8, and the components of q(t) are
similar to the regressors just described. For the
input-output case, the first two, u(t - k) and
y (t - k), are measured variables and cause no
problems. The remaining three are all based on
previous outputs from the black-box model
j(t - k 1 e), so we should write cp(t, 0) instead
of q(t) in (14). The question then also arises how
the simulated output jU(t - k 1 0) is computed if
the network produces predicted outputs jj(t -
k 1 0). The answer is that the output from the

The model structures NOE, NBJ and
NARMAX and the nonlinear state-space model
correspod to recurrent structures (see Section
4.3), because parts of the regression vector
consist of past outputs from the model. It is in
general harder to work with recurrent structures.
Among other things, it becomes difficult to check
under what conditions the obtained predictor
model is stable, and it takes an extra effort to
calculate gradients for model parameter
estimation.

3.3. Other choices of regressors
So far, we have discussed regressors that are

just linear functions of measured outputs and
model outputs. With physical insight about the
system at hand, one should utilize that
information to form new variables by transfor-
mations of the raw measurements. From a
practical point of view, it is sufficient to regard

Nonlinear black-box modeling in system identification 1695

what we have called input u and output y here as a linear model for the system. The residuals from
suitable transformation of the raw measure- this model will then contain all unmodeled
ments, formed in view of what is known about nonlinear effects. The neural net model could
the system. Such a ‘semiphysical regressor’ could, then be applied to the residuals (treating inputs
for example, be a power signal formed by and residuals as input and output), to pick up the
voltage and current measurements, if we believe nonlinearities. This is attractive, since the first
that to be the essential stimulus for the system. step to obtain a linear model is robust and often
Even if nonlinear structures are to be applied, leads to reasonable models. By the second
there is no reason to waste parameters to neural net step, we are then assured to obtain at
estimate facts that are already known. least as good a model as the linear one.

Another type of preprocessing of raw data in
the light of prior knowledge is to use filtered
input as regressors like

4. NONLINEAR MAPPINGS: POSSIBILITIES

L(q)u(t), k = 1,. . . ,d,

rather than u(t - k), where the filters Lk are
tailored to the application. Laguerre and Kautz
filters have been extensively discussed in these
applications (see e.g. Wahlberg, 1991, 1994).
Interesting generalizations of such regressor
choices are described in van den Hof et al.
(1994).

4.1. Function expansions and basis functions
4.1.1. The basic features. Now let us turn to

the nonlinear mapping

g(cp, @)* (18)

which for any given 19 goes from R” to Iwp. At this
point it does not matter how the regression
vector cp = [cpi . . . cpdlT was constructed. It is
just a vector that lives in W’.

3.4. Some other structural questions
The actual way in which the regressors are

combined clearly reflects structural assumptions
about the system. Let us, for example, consider
the assumption that the system disturbances are
additive, but not necessarily white noise:

It is natural to think of the parameterized
function family as function expansions:

Y(l) = R(U’) + v(t). (15)

Here u’ denotes all past inputs, and u(t) is a
disturbance, for which we only need a spectral
description. It can thus be described by

g(po, 0) = C akgk(q). (19)

We refer to gk as basis functions, since the role
they play in (19) is similar to that of a
functional-space basis. In some particular situa-
tions, they do constitute a functional basis.
Typical examples are wavelet bases (see Section
8.1).

u(t) = H(q)+),

for some white sequence {e(t)}. The predictor for
(1.5) is then

j(t) = [I - HplWly(t) + H-‘G&W). (16)

We are going to show that the expansion (19)
with different basis functions, together with all
the possible choice of regression vector rp
presented in the previous section, plays the role
of a unified framework for investigating most
known nonlinear black-box model structures.

In the last term the filter H-’ can equally well be
subsumed in the general mapping g(u’). The
structure (15) thus leads to an NFIR or NOE
structure, complemented by a linear term
containing past y.

Now, the key question is how to choose the
basis functions gk. Most well-known nonlinear
black-box model structures are composed of g,
obtained by parameterizing a single ‘mother
basis function’ that we generically denote by
K(X). In such situations we generally write

In Narendra and Parthasarathy (1990) a
related neural network-based model is sug-
gested. It can be described by

j(t) =f(&, V,(f)) + g(& 4%(f)), (17)

where cpl(t) consists of delayed outputs and q,(t)
of delayed inputs. The parameterized functions f
and g can be chosen to be linear or nonlinear by
a neural net. A further motivation for this model
is that it becomes easier to develop controllers
from (17) than from the models discussed
earlier.

&(p) = K(‘J’t Pk, yk) ‘= @k(p - yk))‘. (20)

The last equation is to be interpreted symboli-
cally, and will be specified more precisely below.
It stresses that Pk and Yk denote parameters of
different nature. Typically, & is related to the
scale or to some directional property of gk((p),
and 3/k is some position or translation parameter.

In McAvoy (1992) it is suggested to first build

A scalar example: Fourier series. Take K(X) =

cosx. Then (19) and (20) will be the Fourier
SerieS expansion, with Pk as the frequencies and
yk as the phases.

1696 J. Sjoberg et al.

Another scalar example: piecewise-constant
functions. Take K as the unit interval indicator
function:

K(X) =
1 for 05x<l,

0 otherwise, (21)

and take, for example, 3/k = k, & = l/A and
ffk = f(kA). Then (19) and (20) give a piecewise-
constant approximation of any function fi
Clearly we should have obtained a quite similar
result by a smooth version of the indicator
function, e.g. the Gaussian bell:

1
K(X) = z e-xz’2. (22)

A variant of the piecewise-constant case. Take K

to be the unit step function

K(X) =
0 for x < 0,

1 for x20. (23)

We then just have a variant of (21), since the
indicator function can be obtained as the
difference of two steps. A smooth version of the
step, like the sigmoid function

K(X) = a(x) = &,
will of course give quite similar results.

4.1.2. Classification of single-variable basis
functions. Two classes of single-variable basis
functions can be distinguished, depending on
their nature.

Local basis functions are functions having
their gradient with bounded support, or at
least vanishing rapidly at infinity. Loosely
speaking, their variations are concentrated on
some interval.

Global basis functions are functions having
infinitely spreading (bounded or not) gradient.
Clearly the Fourier series is an example of a
global basis function, while (21)-(24) are all
local functions.

4.1.3. Construction of multivariable basis
functions. In the multidimensional case (d > l),
gk are multivariable functions. In praCtiCe they
are often constructed from the single-variable
function K in some simple manner. Let us recall
the three most often used methods for
constructing multivariable basis functions from
single-variable basis functions.

1. Tensor product. Given d single-variable func-
tions gl(cp,), . . . , gd(qd) (identical or not), the
tensor product construction of multivariable
basis function is given by their product

g,(cp,) . . &(cpd).

Radial construction. For any single-variable
function K, the radial construction of
multivariable basis function of cp E Rd, has
the form

gk((P) = gk(q, ok, Yk) = K(iV - Yki&)t

(25)

where II * llp, denotes any chosen norm on the
space of the regression vector q. The norm
could typically be a quadratic norm

(26)

with Pk as a possibly k-dependent positive
definitive matrix of dilation (scale) para-
meters. In simple cases flk may be just scaled
versions of the identity matrix.

Ridge construction. Let K be any single-
variable function. Then for all & E Rd,
yk E [w, a ridge fUnCtiOn is given by

gk(q) = gk(% Pk, Yk)

= K@:(P + yk), ‘4’ E Rd. (27)

The ridge function is thus constant for all q in
the subspace {cp E IWd:/3zq = const}. As a
consequence, even if the mother basis
function K has local support, the basis
functions gk will have unbounded support in
this subspace. The resulting basis could be
said to be semiglobal, but the term ridge
function is more precise.

Let us comment on the different possibilities.
For evaluating a function constructed by tensor
product, its factor functions must be evaluated
separately; thus the computational cost is
roughly proportional to the dimension d. For a
function constructed by the other two methods,
the dimension-dependent computational cost
stays only in the evaluation of the norm of
cp - yk or the inner product p&; consequently
the dimensional dependence is much weaker.
For this reason, the tensor product is rarely used
in high-dimensional cases. On the other hand,
these methods yield very different forms of
multivariable functions. By using factors of
different natures, the tensor-product construction
allows one to build functions that behave very
differently in different directions. The radial
construction ensures some directional homoge-
neity. The ridge construction also offers some
direction-selective feature, even if these basis
functions are necessarily constant in some
directions. This, however, turns out to be a quite
useful property in many practical cases. Note
also that in some particular situations two
methods may lead to the same result; for
example a multivariable Gaussian function can

Nonlinear black-box modeling in system identification 1697

be obtained by both tensor-product and radial
constructions.

4.2. Connection to ‘named structures’
Here we briefly review some popular model

structures. Other structures related to interpola-
tion techniques are discussed in Juditsky et al.
(1995). They all have the general form of the
function expansions (19) and most of them are
composed of basis functions g, obtained by
parameterizing some particular ‘mother basis
function’ K as described in the previous section.

Wauelets. Wavelet decomposition is a typical
example of the use of local basis functions.
Loosely speaking, the ‘mother basis function’
(usually referred to as mother wauelet in the
wavelet literature, and there denoted by Cc, rather
than K) is dilated and translated to form a
wavelet basis.? In this context it is common to let
the expansion (19) be doubly indexed according
to scale and location, and use the specific choices
(for the one-dimensional case) pj = 2j and
yk = k. This gives, in our notation,

gj,k(lp) = 2i’2K(2’(p - k), j, k E z. (28)

The multivariable wavelet functions can be
constructed by tensor products of scalar wavelet
functions, but this is not the preferred method.
See Section 8.

Compared with the simple example of a
piecewise-constant function approximation in
Section 4.1, we have here multiresolution
capabilities, i.e. several different scale para-
meters are used simultaneously and overlap-
pingly. With suitably chosen mother wavelet and
appropriate translation and dilation parameters,
the wavelet basis can be made orthonormal,
which makes it easy to compute the coordinates
aj,k in (19). This is discussed in some detail in
Section 8.1 below and extensively in Juditsky et
al. (1995).

Wavelet and Radial Basis Networks. The choice
of local basis functions in combination with the
radial construction of the multivariable case (25),
without any orthogonalization, is found in both
wavelet networks (Zhang and Benveniste, 1992)
and radial-basis neural networks (Poggio and
Girosi, 1990).

Kernel estimators. Another well-known example
of the use of local basis functions is that of kernel
estimators (Nadaraya, 1964; Watson, 1969). A

t Strictly speaking, sometimes the dilated and translated
wavelets may be a frame instead of a basis. See Daubechies
(1992).

kernel function? K(a) is typically a bell-shaped
function, and the kernel estimator has the form

(29)

where h is a small positive number and ‘/k are
given points in the space of the regression vector
q. This is clearly a special case of (19) and (20).

Nearest neighbors or interpolation. Models that
produce outputs depending on the closest
estimation data points and interpolation models
can also be described as expansions in basis
functions. Assume that the data are drawn such
that their cp values form a uniform lattice in Rd.
Take K as the indicator function (21), expanded
to a hypercube by the radial approach (25)
(using the max norm). Then choose the location
and scale parameters in (25) such that the cubes
K(IIcp - yk lip,) are tightly laid and that exactly
each data point falls at the center of one cube.
The corresponding expansions (19) will then be
equivalent to the nearest-neighbor model that
consists in, for any value 4, taking as the output
estimate the y value of the data point whose cp
value is the closest to 6.

B splines. B splines are local basis functions that
are piecewise polynomials. The connections of
the pieces of polynomials have continuous
derivatives up to a certain order, depending on
the degree of the polynomials (De Boor, 1978;
Schumaker, 1981). Splines are very nice
functions, since they are computationally very
simple and can be made as smooth as desired.
For these reasons, they have been used widely in
classic interpolation problems.

Sigmoid neural networks. The combination of
the model expansion (19) with a ridge basis
function (27) and the sigmoid choice (24) for
mother function, gives the celebrated one-
hidden-layer feedforward sigmoid neural net.

Hinging hyperplanes. The hinging hyperplanes
model (Breiman, 1993) is closely related to the
neural network, and corresponds to the choice of
the hinge function rather than the sigmoid for
the mother basis function K. The hinge function
has the form of an ‘open book’ (see Fig. l), and
is defined (Breiman, 1993) as

h(cp) = fmax {P’cp + Y+, P-9 + r-1

where /3’ and p- are row vectors and -y+ and
y- are scalars. In Pucar and Sjoberg (1995b) it is
shown that the hinging hyperplane model is

t Usually the kernel function is denoted by K()

1698 J. Sjijberg et al.

Fig. 1. A hinge function; the building block for hinging
hyperplane models.

overparameterized in its original form. By
introducing the basis functions

K(X) =
0 for x < 0,

fx for x>O,

the hinging hyperplanes model can be
as

c ‘dPTV + Y) + PT’p + 7’0,

where Al. is a parameter vector with the same

expressed

dimension as p. Hence the hinging hyperplane
model is a ridge constructions with an additional
linear term. Using hinge functions as basic
functions yields the kind of piecewise-linear
model proposed by Sontag (1981).

Projection pursuit regression. Another example
of ridge-type basis function is the projection
pursuit regression (Friedman and Stuetzle, 1981;
Huber, 1985), having the form

where Pk are q x d matrices, cp E Rd, d > q, and

gk: RF-+ R are some smooth fitted functions.
The connection to our framework is obvious.
The term ‘projection pursuit’ derives from the
fact that the q selected dimensions represent the
projections in the regressor space that show the
most significant patterns . In other words, there
is not much that happens across these subspaces.

Partial least squares. The ridge basis function
approaches have a connection, at least concep-
tually, to the partial least-squares (PLS)
techniques, much used in chemometrics (Wold et
al., 1984; Helland, 1990). PLS also employs
techniques to select the most significant sub-
spaces of a larger regressor space, so as to
reduce the number of parameters to estimate.

Fuzzy models. The so-called fuzzy models also
belong to the model structures of the class (19).

In this case the basis functions gk are constructed
from the fuzzy set membership functions and
inference rules. How this works is discussed
further in Section 9.

4.3. Network questions
So far we have viewed the model structures as

basis function expansions, albeit with adjustable
basis functions. Such structures are often
referred to as networks, primarily since typically
one ‘mother basic function’ K is repeated a large
number of times in the expansion. Graphical
illustrations of the structure therefore look like
networks.

4.3.1. Multilayer networks. The network as-
pect of the function expansion is even more
pronounced if the basis mappings are convolved
with each other in the following manner. Let the
outputs of the basis functions be denoted by

Vi*‘(t) = gk(q(t)) = K(+)(t) Pkt ?‘k)~ 7

and collect them into a vector

cp (*) = [&‘(t) . . . &)(t)].

Now, instead of taking a linear combination of
these (p(k*)(t) as the output of the model (as in
(19)), we could treat them as new regressors and
insert then into another ‘layer’ of basis functions,
forming a second expansion:

where 8 denotes the whole collection of involved
parameters: (Yk, &, yk, a!‘), pj*) and rl”. Within
neural network terminology, (31) is called a
two-hidden-layer network. The basis functions
K((P(t), fik, yk) then constitute the first hidden
layer, while K((p(*), /3f’, -y{“‘) give the second
one. The layers are ‘hidden’ because they do not
show up explicitly in the output g(cp, 0) in (31),
but they are of course available to the user. See
Fig. 2 for an illustration. Clearly, we can repeat
the procedure an arbitrary number of times to
produce multilayer networks. This term is
primarily used for sigmoid neural networks, but
applies to any basis function expansion (19).

Input layer Hidden layers Output layer

/ A I
F-i---

1 e

s!i

cl+
z

cp j o_
z B

It-
I:

Fig. 2. Feedforward network with two hidden layers.

Nonlinear black-box modeling in system identification 1699

The question of how many layers to use is,
however, not easy. In principle, with many basis
functions, one hidden layer is sufficient for
modeling most practically reasonable systems
(see e.g. Cybenko, 1989; Barron, 1993). Sontag
(1993) contains many useful and interesting
insights into the importance of second hidden
layers in the nonlinear structure.

4.3.2. Recurrent networks. Another very im-
portant concept for applications to dynamical
systems is that of recurrent networks. This refers
to the situation that some of the regressors used
at time t are outputs from the model structure at
previous time instants:

&) = g(cp(t - k), 0).

See the illustration in Figure 3. It can also be the
case that some component qj(t) of the regressor
at time t is obtained as a value from some
interior node (not just at the output layer) at a
previous time instant. Such model-dependent
regressors make the structure considerably more
complex, but offer at the same time quite useful
flexibility.

One might distinguish between input/output-
based networks and state-space-based networks,
although the difference is less distinct in the
nonlinear case. The former would be using only
past outputs from the network as recurrent
regressors, while the latter may feed back any
interior point in the network to the input layer as
a recurrent regressor. Experience with state-
space based networks is quite favorable (see e.g.,
Matthews, 1992; Nerrand et al., 1993; Rivals,
1995).

5. INTERMISSION

The rather formidable task to finding a
black-box, nonlinear model description has now
been reduced to the following subproblems.

1.

2.

3.

Select the regressors q.

Select a scalar mother basis function K.

Let the expansion of this mother function in
the regressor space be either of radial (25) or
ridge (27) type, or possibly be a specific
multidimensional function.

Fig. 3. Example of a recurrent network. 9-l delays the signal
one time sample.

4. Determine the number of basis functions to
be used in (19), as well as the number of
hidden layers, according to (31).

5. Determine the values of the dilation and
location parametrs Pk and yk.

6. Determine the coordinate parameters (Yk in

(19).

The remainder of this article will deal with these
steps. We shall discuss the user aspects of steps 1
and 3 in Section 11.

The combined effects of the choices in steps
2-5 will affect the approximating power of the
model structure. The companion paper by
Juditsky et al. (1995) is specifically devoted to
this question.

The issues we now turn to are steps 5 and 6,
which are the estimation questions. Basically,
there are two possibilities for the dilation and
location parameters in step 5.

l Let p and y be continuous variables and
estimate them at the same time as the LY
parameters.

l Treat /3 and y separately, for example by
offering predetermined values for them, as in
the wavelet approach. Then the estimation of
coordinates a is a linear regression problem
for one layer networks.

We shall deal with these approaches in Sections
7 and 8 respectively. First, however, in the next
section we shall review some general aspects of
model estimation.

6. MODEL ESTIMATION AND MODEL
PROPERTIES

Several different techniques have been de-
veloped for estimating models. We will discuss
such methods in more detail in the following two
sections, but we shall first point to some basic
and general features that affect the model
properties. These turn out to have important
implications both for the choice of basis
functions and for the actual estimation process.

6.1. Models and model estimation
Consider our general black-box model

y(t) -d&h e, = i akgk(dt)j Pkh (32)
k=l

in which the parameters yk previously used have

1700 J. Sjoberg et al.

been included in & for brevity in the following
discussion. For chosen basis functions gk, a main
goal of the model estimation is to choose the
parameters so that the model fit becomes good.
Assume that we are given a (finite) set 2,” of
(measured) regressor-output pairs:

zpN= {(y(t), cp(t)):t = 1, .) N}. (33)

We refer to Zf as the estimation data set, since
the model parameter estimation will rely on it.
Note that all or some of the parameters 8 (i.e.,
(Yk, &) need to be estimated from the data Zf,
depending on the choice of the basis functions
and the estimation method. In the following, let
us denote-with some abuse of notation-the
estimated part of the parameters by the vector 8.
Other, non-estimated, parameters will be sub-
sumed in the basis functions gk. Note that the
dimension of 8 is proportional to n, the number
of basis functions used in (32). The actual
number of estimated parameters, dim 8, will be
denoted by m.

Now, a leading guideline for estimating 8 will
be to minimize the error between the output of
the model and the measured output using Zr, as
in (5):

m: v,(e, Zr) = b $ II Y(t) - g(cp(t), 0) II*. (34)
f 1

The actual method may be to perform this
minimization explicitly (as detailed in Section 7)
or to use some constructive methods (as
discussed in Section 8).

6.2. Model quality
Suppose that the actual data can be described

by

y(t) = g&(t)) + e(t)* (35)

where g, is some unknown ‘true model’ and e(t)
is white noise with variance A.

Let the estimate of 8 based on ZF be denoted
by 6,. We then want go(q) and g(cp(t), 6,) to be
‘close’.

6.2.1. Measures of model quality. How do we
measure the quality of the model? There are of
course many possible measures, suitable for
different applications. We shall here focus on
one that allows some important analytical
results. We measure the fit between any given
model 8 and the true system by

V(e) = E IlY(t) - g(cp(t), e)V

= A + E Ilsd&>) - g(cp(t>t @II’, (36)

where we recall that A is the variance of the
noise e(t). In this expression the regressors q(t)
are assumed to be a stationary process. For most
practical purposes, and under quite general

conditions, it can also be interpreted as the
sample mean:

“‘8’=;mXh,$ iiy(t)-g(q(t), e)iiz. (37)
, I

Here, no other conditions have to be imposed,
other than that the indicated limit exists.

It is important to realize that the measure v
depends on the properties of the regressors. What
is a ‘good model’ thus depends on what regressor
sequence it will be applied to. In what follows we
shall assume that the regressors in the measure
(36) have the same properties (distribution) as
those used in Zf. This is a very important
restriction. Within a given model structure,
parameterized by 8 of dimension m, we can
define the best model according to the chosen
quality measure:

e,(m) = arg rn: V(e) (38)

where we show the dependence on m explicitly.
Note again that e,(m) will depend on the
properties of cp.

To measure the quality of a given model bN,
we shall use

EV(6,) = V,(m). (39)

Here the expectation E is with respect to the
model 8,. The measure (39) thus describes the
model’s expected fit to the true system, when
applied to a new data set, with the same
properties (distribution) of the regressors cp. In
the notation V,(m) we stress that this measure,
for given regressor properties, and a given model
structure family, depends only on the model size
m.

6.2.2. Basic facts: bias and variance. We shall
now quote some quite general results on model
quality that can be found, for example, in
Chapter 16 of Ljung (1987). They are entirely
independent of the model structure used, and
are valid under quite general conditions.

Assume that the estimate 6, is obtained by
minimization of (34). Assume also the model
e,(m) is ‘quite good’ in the sense that the model
residuals should be white noise. Then the model
quality criterion V,(m) as defined in (39) can be
expressed as

V,(m) = EV(8,)

= A + E Ilso(cp@)) - A&), kv) II*

= A + E Ilso(cp) - ‘dcp7 ~,W>ll’
- \
“01SC bias

+ E Ildcpj f!&G> - g(cp, &dll’. (40)
, I

variance

Nonlinear black-box modeling in system identification 1701

As indicated, V,(m) can be approximately
decomposed into two parts: one due to the bias,
the other to the variance of the estimation. They
are further examined in the following.

Bias. As N tends to infinity, we have

8, + O*(m); (41)

then V,(m) will only involve the bias part. The
estimate will thus converge to the best possible
approximation of the true system, for the given
model structure and model size (as measured by
its prediction performance under the regressor
properties used in the estimation data set).

Variance. The estimated parameter vector 6,
will have a certain covariance matrix that
describes its deviation from e,(m). This matrix
is mostly not of direct interest, since the
parameters do not have physical significance. Let
us instead translate the variation in 8 to the
resulting variation in prediction performance.
This gives

E II~(v(~), 6,) - g(~(t), e,(m))112 = A z. (42)

Here, as before, A = Ee*(t), the variance of the
true prediction errors defined in (35). The
approximate equality is asymptotic in N. Also
the expression is given for the case of scalar y.
(In the multivariate case the quadratic norm
used in (42) should be taken as the inverse of the
covariance matrix of e(t). The factor A should
then be omitted: it is subsumed in the norm
used.)

Combining (40) and (42) gives

V,(m) = EV(6,) = A + A ;

+ E Ilso((~) - g(cp, %&4)ll’

= ~(O,(m)) + A ;. (43)

A useful interpretation of (43) is that it displays
the expected loss when the model is applied to a
new data set. It is important to realize that the
expected value of the minimized loss function
(i.e. the model’s performance when applied to
the estimation data) is quite different. With VN
defined by (34), we have

El’,@,) = v&.(m)) - A ;. (44)

6.2.3. Basic consequences: spurious para-
meters. Within a given model structure family,
v(e,(m)) is a non-increasing function of m: the
potential approximation degree increases with

the number of basis functions used. The
approximation capabilities of different structures
in this respect will be commented upon shortly in
Section 6.3. However, when the model is
estimated, there is a direct penalty in using many
parameters, as manifested by the variance
contribution. An added parameter (m increased
by 1) could very well be useful in that it
decreases V,(O(m)). However, as long as this
decrease is less than A/N, the addition of this
parameter is harmful for the overall model
quality V,(m), and the parameter should not be
included. We call such a parameter spurious.
The term over@ is often used to describe what
happens when spurious parameters are
employed.

6.3. Model structure flexibility
Having the bias small for a given parameter

dimension is a matter of having an efficient
function basis: small bias achieved with few basis
functions. Thus a great deal of attention is paid
to the quality of basis function in terms of
function approximation, regardless of statistical
issues.

The black-box model structures reviewed
earlier are all flexible enough to identify most
reasonable systems in practice. On what
concerns the nonlinear mapping from the
regression vector to the output, the companion
paper by Juditsky et al (1995) contains extensive
discussions. Here we just mention some ex-
amples. It is well known that orthonormal
wavelets form orthonormal basis of L2(Rd)
(Mallat, 1989; Daubechies, 1992). Several
authors have shown that a one-hidden-layer
sigmoid network can approximate any con-
tinuous function with an arbitrary accuracy,
provided the number of basis functions used in
the net is sufficiently large, and some error
bounds are known (see e.g. Cybenko, 1989;
Barron, 1993; Juditsky et af., 1995). Similar
results can be obtained for other one-hidden-
layer networks, by using similar techniques.

6.4. Parameters offered and parameters used
There is a natural way to approach the

problem of minimizing (40) with respect to m:
try a sequence of models, with increasing m and
estimate V,(m) either by testing the model on a
validation data set, or by modifying the obtained
loss for the estimation data in view of (43), (44).
(The latter is the essence of the Akaike critria
AIC and FPE.)

In some simple model structures there is a
natural ‘ordering’ of parameters. This is true, for
example, for linear black-box models of single-
input single-output dynamical systems: the model

1702 J. Sjiiberg et al.

order serves as the ordering entity. For the
nonlinear black-box models under discussion
here, this is not the case. It is therefore not easy
to carry out the mentioned program, without
testing an astronomical amount of cases. This
leads to the idea of ‘offering’ the model structure
a whole lot of parameters, and then trying to
decide which are the important-non-spurious-
ones, and ‘using’ only those. The number m in
(40) should then correspond only to the number
of actually used parameters. In this subsection
we shall review some possibilities to achieve that
feature.

6.4.1. Regularization: pull towards the origin.
One common and useful technique to distinguish
between more and less ‘important’ parameters is
to add a penalty term to the criterion (34):

WN(& C) = VN(&, -C) + 6 II 412 J (45)

where S is a small number. Intuitively, the idea is
that a parameter that does not influence the first
term very much will be kept close to zero by the
second term. A parameter that is important for
the model fit will, however, not be very much
affected by the second term. Suppose we
minimize (45) instead of (34). Then it can be
shown, (see e.g. Sjoberg and Ljung, 1992;
Moody, 1992) that (42) will still hold, with the
important change that the number m is reduced
to

r(m, 8) = jj a’
k=l (Crj + 8)’ ’

where a, are the eigenvalues (singular values) of
v”(e), the second-derivative matrix (the Hes-
sian) of the criterion (36).

How does one interpret (46)? A redundant
parameter will lead to zero eigenvalue of the
Hessian. A small eignevalue of V” can thus be
interpreted as corresponding to a parameter
(combination) that is not so essential: a ‘spurious
parameter’. The regularization parameter S is
thus a threshold for spurious parameters. Since
the eigenvalues aj are often widely spread (for
the neural network case, see Saarinen et al.,
1993), we have

r(m, 8) =m#

= number of eigenvalues of V”

that are larger than S.

We can think of m# as the ‘efficient number of
parameters in the parameterization’. Regulariza-
tion thus decreases the variance, but typically
increases the bias contribution to the total error.

The parameter 6 in (45) acts like a knob that
affects the ‘efficient number of parameters used’.
It thus plays a similar role as the model size:

l large
ante,

l small
small

All this

S-small model structure, small vari-
large bias;

&---large model structure, large variance,
bias.

means that we can ‘offer’ a large number
of parameters for the fit, and then use 6 in (45)
to tune in the actual number m* of ‘used’
parameters. The tuning can be done by checking
the model’s prediction performance when
applying it to a validation data set.

The added regularization term S 1) 811’ in (45)
can be changed to

w,(e, z:) = v,,(e, z:) + 6 118 - e#llz (47)

without changing the beneficial effects on the
variance error. This penalty term corresponds to
a prior Gaussian distribution for the parameters,
i.e. they have mean B* and covariance matrix
2/N. In MacKay, (1992) a Bayesian approach is
introduced in which the parameters may belong
to different Gaussian distributions. This means
that the spurious parameters can be excluded
from the fit by associating them with a large
prior at the same time as the important
parameters, connected to a small prior, receive
only a small bias. The additional Gaussian
distributions describing the parameters can be
estimated together with all other parameters.
This is also described in MacKay (1991).

Regularization can also be used to include
prior knowledge in the black-box model. Instead
of penalizing the size of the parameters as in
(47), one can add a complexity term which
penalizes the distance to some nominal model.
An example of this approach is given in Suykens
et al. (1994).

6.4.2. Omitting basis functions. An alternative
way to find the important parameters is to select
the regressors to be used carefully, guided by the
data. This is a classical topic in statistical
regression, and we shall review such techniques
in Section 8.

A variant of this is shrinking. This means that
components of 6, that are below a certain ‘noise
level’ are set equal to zero or pulled towards
zero using a soft threshold. (The relationship to
regularization is obvious.) This reduces variances
without significantly changing the bias. The
difficulty is to know or estimate this ‘noise level’.
This is also discussed in Section 8.1 and
extensively in Juditsky et al. (1995) for the case
of wavelets, where most spectacular results are
obtained.

The equivalent of shrinking in connection with
neural nets is called pruning, and it has attracted
much interest lately (for an overview and further
references see e.g. Reed, 1993). In pruning, in

Nonlinear black-box modeling in system identification 1703

contrast with shrinking, the dilation parameters
are also considered and possibly deleted.

7. ESTIMATION ALGORITHMS: OPTIMIZATION
METHODS

In this section and the next, we review
methods for parameter estimation; i.e. for a
given number II of chosen basis functions g,, we
deal with issues on how to estimate unknown
parameters in the model.

If all the components of 8 are ‘unknown’, a
basic approach is to minimize VN(f3) as defined
in (34) with respect to all the parameters. First a
short review of algorithms for minimizing V,(O)
is given, and then some topics connected to this
minimization are discussed.

7.1. Methods of minimization
7.1.1. The criterion. Given a scalar-valued

criterion like (34), the parameter estimate is
defined as the minimizing argument:

6, = arg min VN(0). (48)

The estimate of the unknown function will then
be

&(cp) = g(cp, &v). (49)

Sometimes a general, non-quadratic, norm is
used instead of (34)

v,(e) = i I$ wt, e)),
I 1 (50)

et, 0) = Y(t) - gtcpw, 0).

The estimate 8, is the maximum likelihood
estimate for a specific noise assumption, which
depends on the choice of norm. The quadratic
norm, for example, corresponds to the assump-
tion of white Gaussian noise.

7.1.2. Entropy interpretation. When prob-
abilities are being estimated, for example in
classification problems, it is common to choose a
criterion based on the relative entropy, (see e.g.
Cover and Thomas, 1991). This gives the
maximum-likelihood estimate of the probability
(Baum and Wilczek, 1988). The relative entropy
is defined as

P(cp) entropy = p(q) log -
B(cp) ’

(51)

where p (~0) = @ (cp, 0) and p (cp) are the estimated
and true probability for cp belonging to class %.
The entropy is non-negative, and it is zero only if

P(q) = P(cp).
Removing the parameter-independent terms

from (51) gives -p(q)logp(q), which is the
expectation value of -log@ (cp). If this expecta-

tion value is replaced by the sample means, one
obtains the criterion

v,(e) = - C logptcp).
PS%

(52)

If several probabilities are considered at the
same time, for example in a two-class problem,
then the critrion becomes a sum of terms like

(52).
7.1.3. Nonlinear optimization methods. In

general, the minimum of V,(O) cannot be
computed analytically, so the minimization has
to be done by some numerical search procedure.
This is called nonlinear optimization, and a
classical treatment of the problem of how to
minimize sum of squares is given in Dennis and
Schnabel (1983). A survey of methods for the
NN application is given in Kung (1993) and van
der Smagt (1994).

Generally speaking, the numerical minimiza-
tion of criteria of fit for identification purposes is
a well established topic, and treated for general
model structures, for example in Ljung (1987)
and Ljung and Glad (1994). The general
consensus is that one should use a damped
Gauss-Newton algorithm with regularization
features for ill-conditioned Hessians-all of this
to be defined shortly-in an off-line manner,
unless the application demands on-line (recur-
sive) algorithms. Given this, a surprising amount
of applications in the neural network area have
used gradient search in an on-line fashion. This
has contributed to the popular opinion that
neural networks require large amounts of time
for their ‘training’ (i.e. parameter estimation).

7.1.4. The basic search algorithm. The discus-
sion that follows is based on the quadratic norm
(34)-for other choices, only minor modifica-
tions have to be done, Most efficient search
routines are based on iterative local search in a
‘downhill’ direction from the current point. We
then have an iterative scheme of the following
kind:

&;+I) = &i) - P;R,’ VA. (53)

Here @) is the parameter estimate after
iteration number i. The search scheme is thus
made up from the three entities

l pi, step size;

l VA, an estimate of the gradient V&(6(‘));

l R;, a matrix that modifies the search direction.

It is useful to distinguish between two different
minimization situations:

(i) ofSAne or batch-the updata ~$7’ Ox. is

1704 J. Sjijberg ef al.

(ii) on-line or recursive-the update is based
only on data up to sample i (Zi) (typically
done so that the gradient estimate Vfi is
based only on data just before sample i.)

We shall concentrate on the off-line case below.

based on the whole available data
ZN;

record

For some general aspects of recursive tech-
niques, we refer to Sjiiberg et al. (1994).

7.2. Search directions: gradient and Newton
The basis for the local search is the gradient

VA(e) = - $ z [y(t) - g(cp(t), @lh(+4t), Q I 1
(54)

where

h(cp(t), 0)

= ;g(q(t), e) (an (m X l)-vector), (55)

where m = dim 8. (Here we assume that y is a
scalar.) It is well known that gradient search for
the minimum is inefficient, especially for
ill-conditioned problems close to the minimum.
Then it is optimal to use the Newton search
direction

R- @)Vxe), (56)

where

zqe) = v;(e)

= $ $ h(cp(t)> fwTGf4)~ 0)
, 1

+ $ $i [Y(t) - da9 e)i
I I

(57)

The true Newton direction will thus require that
the second derivative

-$ gka 0)

be computed. Also, far from the minimum, R(8)
need not be positive-semidefinite. Therefore
alternative search directions are more common
in practice.

l gradient direction. Here one simply takes

Ri = I. (58)

Gauss-Newton direction. Here

Ri = H;

= hz h(cp(t), 6”‘)hT(cp(t), @). (59)

Levenberg-Marquardt direction. Here

Ri = Hi + SI, (60)

is used, where Hi is defined by (59) and S may
be used instead of a step size. A large S gives a
small step in the gradient direction and a small
(zero) 6 gives a Gauss-Newton step.

Conjugate gradient direction. The Newton
direction is constructed from a sequence of
gradient estimates. Loosely, VE; can be
thought of as constructed by difference
approximation of d gradients. The direction
(56), however, is constructed directly, without
explicitly forming and inverting V”.

It is generally considered (Dennis and
Schnabel, 1983) that the Gauss-Newton search
direction is to be preferred. For ill-conditioned
problems, the Levenberg-Marquardt modifica-
tion is recommended. The ideal step size p in
(53) would be p = 1 if the underlying criterion
really were quadratic. What is typically done is
that several values of p are tested (from 1 and
down) until a new parameter value is found that
gives a lower value of the criterion. This is what
is referred to as the damped Gauss-Newton
method.

However, good results with conjugate gradient
methods have also been reported in NN
applications (van der Smagt, 1994). Such
methods where an approximation is used instead
of the true Hessian are referred to as
quasi-Newton methods.

Equation (53) describes how the parameter
update is done, and this is the basic numerical
method to find the minimum. The straight-
forward approach is to estimate all parameters in
each iteration. There also exist two-stage and
multistage algorithms where only some of the
parameters are updated in each iteration. By
only considering a subset of the parameters, the
computational burden of each iteration becomes
lower. This must usually, however, be compens-
ated by a larger number of iterations. The
advantage of this approach depends on the
nature of the specific problem considered. For
example, parameters connected to non-
overlapping basis functions can be updated
independent of each other.

A recent example of a multistage method is

Nonlinear black-box modeling in system identification 1705

Breiman’s algorithm for the parameter estima-
tion in a hinging hyperplanes model (Breiman,
1993). Breiman suggests a scheme where only
the parameters in connection with one hinge
function should be updated in each iteration. At
first, it is not at all obvious that the algorithm fall
under the general description covered by (53),
but it can be shown that the algorithm is
equivalent to a multistage Newton algorithm
applied to a quadratic criterion. See Pucar and
Sjbberg (1995a).

7.3. Back-propagation: calculation of the
gradient

The only model-structure-dependent quantity
in the general scheme (53) is the gradient of the
model structure (55). In connection with neural
networks, the celebrated back-propagation error
algorithm (BP)? is used to compute this gradient.
Back-propagation has been described in several
contexts (see e.g. Werbos, 1974; Rumelhart et
al., 1986). For a one-hidden-layer sigmoid neural
network, (27) it is straightforward to compute
the gradient, since (omitting the subscript k)

$ ag(& + r) = g(PP + Y),

& ag(P9 + r) = ag’(& + Y),

where (Y and y are scalars and /3 is a row vector.
The BP algorithm in this case means that the
factor cyg’@q + 7) from the derivative with
respect y is reused in the calculation of the
derivative with respect to p.

The back-propagation algorithm is, however,
very general and not limited to one-hidden-layer
sigmoid neural network models. Instead, it
applies to all network models, and it can be
described as the chain rule for differentiation
applied to the expression (19) with a smart reuse
of intermediate results needed at several places
in the algorithm. For ridge construction models
(27) where pi . is a p arameter vector (e.g. neural
nets), the only complicated thing with the
algorithm is actually to keep track of all indices.
When pi is a parameter matrix, as in the wavelet
model, the calculation becomes somewhat more
complicated, but the basic procedure remains the
same.

When shifting to multilayer network models,

t Sometimes in the NN literature the entire search
algorithm is called back-propagation. It is, however, more
consistent to keep this notation just for the algorithm used to
calculate the gradient.

the possibilities of reusing intermediate results
increase, and so does the importance of the BP
algorithm. This can be described in an
illustrative way; see Fig. 4.

For recurrent models, the calculation of the
gradient becomes more complicated. The gradi-
ent h(t) at one time instant depends not only on
the regressor cp(t, f3) but also on the gradient at
the previous time instant h(t - 1). See Nerrand
et al. (1994) for a discussion of this topic. The
additional problem of calculating the gradient
does not, however, change anything essential in
the minimization algorithm. In the neural
network literature this is often referred to as
back-propagation through time.

7.4. Implicit regularization, stopped iterations
and ‘overtraining’

We have stated that the estimation of 8 is
performed by minimizing the criterion (34).
Then the iterations in the basic scheme (53)
could be run until no further improvement in the
fit can be found, i.e. until a (local) minimum of
V, has been reached. However, it was noted
early on in the neural network literature that if
the model was evaluated on validation data, it
first improved with the number of iterations, but
then started to deteriorate with increasing
number of iterations (despite the fact that the
value of V,, based on the estimation data, of
course continued to improve). This phenomenon
was termed overtraining.

The effect can be explained as follows (for
more formal treatments, see Wahba, 1987;
Sjijberg and Ljung, 1992): Suppose that the
iterative search in (53) is started at b(O) = 8”.
The iterations will then pull the parameters
towards the minimizing values. The parameters
that have a substantial influence on the fit will
feel a stronger pull, and will be adjusted quicker
than the less important parameters. If the
iterations are aborted before V, has been
minimized, the less important parameters will
thus hang on around the initial value OS. This is
pretty much the same result as if we had
minimized the regularized criterion (47). Incre-
asing the number of iterations i thus corresponds
to decreasing the regularization parameter 6.

More precisely, the link is as follows (when
quadratic approximations are applicable):

(I - /.K’V”)i - 6(6Z + V-l,

so, as the iteration number increases, this
corresponds to a regularization parameter that
decreases to zero as

log s - -i. (61)

An increasing number of iterations is therefore

1706 J. Sjbberg et al.

Fig. 4. An illustration of back-propagation. The graph on the left encodes a formula in the way expressions are encoded into
abstract graphs in syntactic analyzers in computer science: for instance, the graph here encodes g(cp, 0) = xi q *gi(cp, p,) (where *
denotes multiplication), i.e. the general one-layer network formula (19). Nodes of this graph can be interpreted both as operators
(e.g. f, *, gi) and as the evaluation of the expression encoded by the subtree located below this node. The triangle ‘same pattern’
indicates that each component q, of cp could be the result of evaluating again the same function encoded by the same graph. This
would immediately encode a two- and then multilayer network. On the right-hand side, we have expanded once the ‘same
pattern’, showing the case of two layers. We have shown by thick lines the paths linking the root g(cp, 0) to one particular
parameter, say Pk. The semantics of the thickening are as follows: each node on a thick path that is an operator (e.g. +, *, g,) is
replaced by its partial derivative with respect to the node just below it on the thick path (here, we regard such a node as the
evaluation of the expression encoded by the subtree located below it). For instance, in the figure gi is replaced by 8gJ&pt*) and g,
by 8g,&a&. By the chain rule for differentiation, it turns out that the graph on the right-hand side encodes the partial derivative
ag(cp, 0)/a&! This graphical representation also explains why intermediate calculations can be shared for different partial
derivatives, and this is indeed the nice feature of ‘back-propagating’ the gradient. This presentation is due to G. Cybenko (see

Saarinen ef al., 1993).

equivalent to a larger model structure-more
‘used’ parameters. The concept of overtraining is
consequently just a reflection of the well-known
concept of oue$t, defined in Section 6.4.

How do we know when to stop the iterations?
As i + m, the value of the criterion VN will of
course continue to decrease, but as a certain
point the corresponding regularization para-
meter becomes so small that increased variance
starts to dominate over decreased bias. This
should be visible when the model is tested on a
fresh set-the validation data or generation data.
We thus evaluate the criterion function on this
fresh data set, and plot the fit as a function of the
iteration number. A typical such plot is shown in
Fig. 8 in Section 10.1. This method of
terminating the iterations when the model fit
(evaluated for the validation data) starts to
increase will be called stopped search.

Regularization implemented as stopped search
is called implicit regularization, in contrast to the

explicit regularization obtained by minimizing
the modified criterion (45).

7.5. Local minima
A fundamental problem with minimization

tasks like (34) is that V,(O) may have several or
many local (non-global) minima, where local
search algorithms may get caught. There is no
easy solution to this problem. It is usually
well-used effort to spend some time to come up
with a good initial value fi(‘) at which to start the
iterations. This is, however, not a realistic option
in most nonlinear black-box problems, where
little prior knowledge is available. The best thing
in such cases is usually to choose d(O) at random
in such a way that the support of the basis
functions covers the interesting domain of the
input space. Model structures using constructive
estimation methods give some more options,
which are described in Section 8.

Other than that, only various global search

Nonlinear black-box modeling in system identification 1707

strategies are left, such as random search,
random restarts, simulated annealing and genetic
algorithms.

8. ESTIMATION ALGORITHMS: CONSTRUCTIVE
METHODS

Recall that in our general model structure (32)
the total parameter vector 8 is composed of two
different parts: the coordinate parameters (Yk on
the one hand, and the dilation and location
parameters (fik, Yk) on the other. For fixed
parameters (Pk, Yk), minimizing (34) (0 collects
all the (Yk in this case) is a linear least-squares
problem. Such problems are very ‘nice’ in that
efficient algorithms exist, no search has to be
performed, and there is no problem with local
minima. This assumes that the VdUeS of (Pk, yk)

(and thus the parameterized basis functions)
have been ‘chosen’ in some efficient manner.
This approach is feasible only with some
particular basis functions that come with a
natural choice of the values of (&, Yk). For
instance, wavelets are very well suited for
applying such approach. In fact, even in such
situations, the choice of (j&, yk) is often partially
influenced by the observed data. For the
algorithms considered in this section, data are
used for selecting the values of these parameters
from some practically finite set. This finite set of
the values depends on the chosen basis functions
and possibly on prior knowledge on the
application. We refer to such approaches for
model estimation as constructive methods.

Wavelets play an important role for construc-
tive methods, so this section is mainly concentr-
ated on wavelet-based models.

8.1. Orthonormal wavelet decomposition and
shrinking algorithms

Wavelets are a very interesting class of
functions because of their special properties. In
this subsection we first introduce some basic
concepts about orthonormal wavelet bases, then
we describe the wavelet shrinking techniques
that make wavelets powerful nonlinear
estimators.

8.1.1. Orthonormal bases of wavelets.
Multiresolution analysis introduced by Yves
Meyer and Stephane Mallat and further
developed by Ingrid Daubechies provides ortho-
normal bases of &([w) of the form? $j,k((p) =
{2’/*4!42’cp - k):j, k E Z}, i.e. each element of the
basis is a translated and dilated version of a

-F In the wavelet literature wavelets are usually considered
as functions of x and denoted by e(x). Here we consider
wavelets as particular basis functions, and use #(cp) to denote
wavelets as functions of the regression vector q.

single mother wavelet $I. For the time being, let us
consider only scalar cp E R. For a function
f E L2([w), the inner product (f, $hj,k) performs
zooming on f over a 0(2-j) width interval
centered at the point 2-jk. Thus large j
corresponds to checking the function f at fine
scales. This implies that a local singularity of a
function f will affect only a small part of its
coefficients in this wavelet basis. This is the main
difference with the Fourier basis: a local
singularity of f would affect the whole Fourier
representation. Thus, using this basis, each
f E L,(R) is expanded ast

i.e. L,(R) is decomposed into the doubly infinite
orthogonal sum L*(R) = $jEh 4, where Wj =
span {$j,k, k E Z}. In this expansion j is the scale
index, which ranges from infinitely coarse up to
infinitely fine, and k is the translation index.
Now, it is often useful in practice not to consider
this double-sided expansion, but to use instead a
one-sided expansion where all scales j < 0 are
collapsed into a single basic ‘low-resolution’
subspace of L*, i.e. we set V, = @jjCO Wj. This
can be achieved by associating with the mother
wavelet $ a so-called ‘father wavelet’ (also
termed ‘scale function’) 4, whose translated
versions suffice to span all scales j < 0. Thus the
expansion with which we shall actually work has
the form

f = kzz aOk+Ok + c ff$$jk

j?O. k=E
L-

izerO scale’ v,, ‘finer scales’ @,?,) w,

$,,k((P) = 2’/*‘4’(2j(P - k),
(62)

Ly Ok = (f, +O,kh

and (62) is an orthonormal expansion. We refer
the reader to Juditsky et al. (1995) for a more
formal introduction to this material, as well as
the discussion of smoothness properties of
wavelets thus constructed. Remark that the
dilation parameter 2j and translation parameter k
of a wavelet correspond to the parameters p and
y of our generic ‘mother basis function’ as first
introcuced in (20).

The very strong point of such orthonormal
wavelet expansions is that coarse-scale
coefficients can be recursively computed from
fine-scale ones, and vice versa. Let us explain

t The wavelet coefficient (J I&) is usually denoted by pjk.
Here we use cyjt in order to keep consistent our notations a
and p. Note that (. , .) denotes the inner product in Lz.

1708 J. Sjoberg et al.

this. If g(cp) E @i<j,, y then clearly g(29) E
$j<j(,+l y. Hence, since the family {&k} spans
VO, then ((p(2~ - k)} spans the next finer scale
V,CB W,, i.e. we have

4(V) = fi F h&(2P - k),

(63)

for suitable (hk) and (gk). Equations (63) imply
that, for f E L,(R),

ajk = (f, 4,k), a~ = (f, $jk) (64)

obey the following fine-to-coarse recursions

(65)

(66)

The recursions (65) and (66) are used to
compute recursively from fine scales to coarse
scales the orthonormal wavelet decomposition,
with aj,h as initial condition (the index j0 denotes
the finest scale in these recursions). Assume that,
in addition, the scale function 4 is selected so
that the computation of inner product (f, ~$~~&k) in
(64) can be performed efficiently. Then (64)-
(66) together give a highly eficient procedure for
computing the wavelet decomposition of f; see
Juditsky et al. (1994) for an efficient computation
of the inner product (f, ~jk). In addition, (65)
and (66) can be inverted to yield the
coarse-to-fine recursion

ff,k = 7 hk-2,(Yj-l.lfgk~21~i*_L,l. (67)

For f E I$:.,,, we have, by the definition of this
space,

and, for j,,>O, since r/;.,,=V0@W0G3W,@...CE

y,,- 1 I

f = 7 aOk+Ok +
Osgc, k 4 *jk.

(69)

The formulae (65) and (66) allow us to switch
from the representation (68) to representation
(69). The latter is generally much more compact,
since, when f is smooth, most (~3 are negligible.

We now move on discussing the multidimen-
sional case. There exist two main types of
constructions of the wavelet basis with dilation
factor 2 in R” (Daubechies, 1992, Section 10.1).
A first guess simply consists in taking tensor-
product functions generated by d one-
dimensional bases:

This construction has the drawback of mixing
different resolution levels jj. Alternatively, if
such a mixing is not desired, we proceed as
follows. We introduce the scale function

@a(p) = 4(q1) ‘. . x +((Pd) (71)

and the 2” - 1 mother wavelets Y(“(cp), i =
1 2” - 1, obtained by substituting in (71)
S&L ’ ~(cpi)s by $(pj)S. Then the following
family is an orthonormal basis of L2(Rd):

@Ok((P), y;:‘((p), . . . , wj,““-“($+,

j E No, k =[k, . . kd] E Zd, (72)

where No = N U 0, and

@,/k(q) = 2id’2@(2i(p, - kl, . . . , 2j$,d - k,),

Y$‘(cp) = 2jdi2@(2j~, - k, , . , 2jqd - kd).

Note. As (72) shows, constructing and storing
orthonormal wavelet bases become of prohibi-
tive cost for large dimension d. This is the main
limitation in using the otherwise very efficient
techniques relying on orthonormal wavelet bases
(and their generalizations).

8.1.2. Wavelet shrinking algorithm. Assume
that a N-sample of estimation data is available:

{(y(t), q(t)) :y(t) = go(cP(t)) + e(t), t = 1, . . . , N,

where go is some unknown ‘true model’, p(t) and
e(t), t = 1, . . , N, are i.i.d. sequences of random
variables, and Ee(t) = 0, Ee2(t) = A. We assume
for the time being that q(t) is uniformly
distributed on [0, lid. For go E L2, recall the
(multidimensional) wavelet expansion

&1(p) = c aOkaOk((P)

ktl

+ 2 c 2g’ (Y;(“Y;&), (73)
,=O ktZ” /=I

where

a0k = gO(~)@Ok(~) da
I

*co =
ajk go(d’%‘(d dv.

(74)

To construct an estimate of go, a first idea
consists in using the law of large numbers and
replacing in the expansion (73) the coefficients
(Ye and ‘Y,$‘) by their empirical estimates

&k(N) = $ $ y(t)@Ok(&)),

, I

G;;)(N) = $ g y(t)Y$)(q(t)).

(75)

f I

Nonlinear black-box modeling in system identification 1709

Note that the assumption that cp(t) is uniformly
distributed has been used at this point. This
brute-force estimate is impractical in many
points: q(t) is not generally uniformly distributed
in real life, most of the Y$) would have just no
cp(t) sample in their support, so that empirical
averages s);)(N) are not defined, and, finally,
most of the remaining 3$(N) would not be
significantly different from ‘noise level’ and
should probably be discarded. All these issues
are addressed in the following procedure (for its
mathematical justification, see Juditsky et al.,
1995).

1.

2.

Select relevant scales. Obviously, in,ortF to
compute the empirical coefficient (Y jk, we
require that at least several observations q(t)
hit the support of Y$)((p). Statistical laws of
log log type guarantee that this would
generically hold for scales that are not too
fine, more specifically for j 5 jmax, where

N 2N - (2&n.X (-
lnN- -1nN’

Thus, by brute force, we set 3);) = 0 for

j > imax. Note that we have not used the
assumption that q(t) is uniformly distributed
at this point.

Collapse data into a synthetic regularly
sampled record. Assuming that q(t) has a
smooth enough density, we shall approximate
it by a constant over each bin

Ak = [2-jmark,, 2-jmax(kI + l)] x . . .

x [2-j+& 2-jma& + l)]

of length 2-djmaX. Then, since we know
(statistically) that each such bin has enough
data, we can (very coarsely) collapse the data
within each bin into a single representative
data point by taking simple averages,
namely?

g$~,k) = EC;“=, Y(t)lt’p(Q~A~l
EL, 1 IP(~)E

will be the synthetic output associated with
the kth bin Ak. Then we set

‘j,,,,k =
2&& - (N,k)

go)

i.e. we identify (up to the scaling factor) g$/“rk)
with the father wavelet coefficients of our
unknown function to be estimated, taken at
the finest scale imax.

3. Use fine-to-coarse recursions to get the

t 1, is the indicator function, i.e. 1, equals 1 if A is true, 0
otherwise.

wavelet expansion. At this point we have
constructed synthetic input-output pairs,
where the input is the considered bin and the
Output iS the associated Bj,,,,k estimate.
Getting the full wavelet expansion is then
performed by applying to these synthetic data
the recursion formulae (65) and (66). We use
the multidimensional version of the filters
(65) and (66) to compute hjk,

--a0
Cl’ jkt

j=O ,..., imax--l,Z=l ,..., 2”-1:

&jk = c hi-zkGj+l.r,
I

4. Shrink junk below noise level. Now what we
have at this point is an estimate of the full
wavelet expansion of our unknown function,
up to scale imaX. Owing to the local nature of
wavelets, the expansion coefficients are
significantly different from zero only for
wavelets having significant variations of go in
their supports. Thus most of the coefficients
in this expansion would basically contain only
noise, with no relevant information. Since our
wavelet basis is orthonormal, it can be shown
that significance of wavelet coefficients can be
tested separately for each coeficient, by
comparing them with suitably selected thr-
esholds (cf. Juditsky et al.,

<(I)
1995). Thus we

shrink the estimates (Y jk according to

5.

where Aj is a properly selected threshold.

Use coarse-to-fine recursions to reconstruct the
finest scale. We are now ready to use the
‘inverse’ filter (67) to obtain cZ!~,,,,~:

and we finally set

Steps l-5 constitute our algorithm. Note that
most of its computational burden is concentrated
into the fine-to-coarse and coarse-to-fine recur-
sions, for which packages are available (see e.g.
Taswell, 1993). Altogether, this is an extremely
efficient algorithm for small dimensions (typi-
cally d 5 3).

8.2. Techniques of basis functions selection
Orthonormal wavelet bases are really a very

nice and restricted class of basis functions related
to very fast estimation algorithms and efficient

1710 J. Sjiiberg et al.

shrinking algorithms. However, they are practi-
cally applicable only to problems with a small
number of regressors and reasonably distributed
data. In this subsection we introduce the
techniques of basis function selection, applicable
to a less restricted class of basis functions,
including non-orthogonal wavelets. These tech-
niques can handle applications with a moderately
large number of regressors and sparse data.

With these techniques, we shall be able, based
on observed data, to select the values of Pk and
yk (typically they are dilation and location
parameters) from a finite set 3, or, equivalently,
to select basis functions gk((P, &, Yk) from a
finite set of basis functions:

+?= ii?k((P, Pk, rk):(Pk, -Yk) E 3). (77)

We shall refer to % as the basis function set in the
following.

We first discuss how to construct the basis
function set % before introducing the techniques
of basis function selection.

8.2.1. Construction of the basis function ser.
For simplicity, we consider the case where the
basis functions are parameterized versions of a
single ‘mother basis function’ K, i.e.
gk(q, &, Yk) = K(Cp, Pk, yk). The construction Of
9 depends on the form of K. Typically @k and yk
correspond to the dilation and translation
parameters respectively; and the model is only to
be estimated in some finite domain of the
regression vector rp, up to some resolution level.
This can suggest the choice of 5% Below we
discuss three typical examples.

One-hidden-layer sigmoid networks. Here
gk(q) = u&q + yk). The parameters Pk and yk
should be chosen so that the non-flat part of
fl(&q + yk) stays inside the domain of interest,
and the values of (@k, Yk) are well ‘distributed’.
However, there is no clear idea for this
‘distribution’. For this reason, it seems that the
basis function selection techniques are nor well
suited for sigmoid networks.

Radial basis function (RBF) networks. Here

gk(p) = r@k((P - yk)h where r is a radial
function. There are two possibilities for choosing
the values of yk (the centers of the RBFs): take
the values of Yk on a uniform lattice in the
regression vector space, or let the Values of 3/k be
equal to the ‘observed’ values of the regression
vector. It is more difficult to choose the values of
Pk. Adaptive clustering or vector quantization
techniques can be used for this purpose (Poggio
and Girosi, 1990).

Wave/et networks. Here g(cp) = $(&((p - yk)),

where Ic, is a wavelet function. The choice of fik
and yk (the dilation and translation parameters)
is very well suggested by the wavelet transform.
Typically, the values of Pk and yk form a regular
lattice, as in wavelet bases and frames.

After C% has been chosen, the corresponding
basic function set Y is given by (77).

The construction of 9 may have some
practical limitations when the dimension d of the
regression vector cp is large, since typically the
size of 9 increases exponentially with d.
However, for applications of large regressor
dimension, the estimation data are often sparse
in the space of regression vectors. This feature of
the data should be taken into account for the
construction of 9. For instance, if the basis
functions are generated from a local ‘mother
basis function’ K(.), many basis functions in %
constructed in some regular way do not contain
any (or contain few) estimation data in their
effective supp0rt.t Such basis functions can be
immediately rejected. This will limit the size
of 5%

8.2.2. Basis function selection algorithms.
Assume that the basis function set 3 has been
chosen. Now the problem is, given a set of
estimation data as defined in (33), how to select
n basis functions from 9. This is a classical
problem in regression analysis (Draper and
Smith, 1981). For a given value of n, selecting n
optimal basis functions could, in principle, be
performed via an exhaustive search that would
consist in examining all the possible combina-
tions of n basis functions from 9. The number of
all possible combinations is usually very large.

Some special constructions of 3 result in
orthogonal basis functions. In such situations the
basis function selection problem can be solved in
a very efficient way. The wavelet shrinking
algorithm described in Section 8.1 is a very
spectacular example. Even when the basis
functions are not strictly orthogonal, but close to
orthogonal, applying the shrinking technique can
also give reasonable results. The near-tight
wavelet frames (Daubechies, 1990) are typical
examples of such almost orthogonal basis
functions.

In the general case where the basis functions
in % are not orthogonal, in order to overcome
the combinatorial complexity of the exhaustive
search, three different heuristics are reviewed in
the following; details of these algorithms can be
found in Zhang (1994).

t The term ‘effective support’ is used instead of ‘support’
to deal with the case of non-compactly supported basis
functions.

Nonlinear black-box modeling in system identification 1711

The residual based selection (RBS). The idea of
this method is to select, for the first stage, the
basis function in % that best fits the estimation
data, then repeatedly select the basis function
from the remainder of % that best fits the
residual of the previous fitting. In the literature
of classical regression analysis this method is
referred to as stagewise regression procedure.
See, for example, Draper and Smith (1981).
Recently it has been used in the matching
pursuit algorithm of Mallat and Zhang (1993)
and the adaptive signal representation of Qian
and Chen (1994).

Stepwise selection by orthogonalization (DO).
The RBS method does not explicitly consider the
non-orthogonality of the basis functions in %.
The idea of this alternative method is to select,
for the first stage, the basis function in G!? that
best fits the estimation data, then repeatedly
select the basis function from the remainder of 3
that best fits the estimation data while combining
with the previously selected basis functions. For
computational efficiency, later selected basis
functions are orthogonalized to earlier selected
ones. It has been used in radial basis function
(RBF) networks and other nonlinear modeling
problems in Chen et al. (1989, 1991).

Backward elimination (BE). In contrast to the
previous two methods, the backward elimination
method starts by building the model using all the
basis functions in %, then eliminates one basis
function per stage, while trying to deteriorate the
model fit as little as possible. A recursive scheme
between the elimination stages can be used to
reduce the computational cost. This method is
computationally expensive when %’ is large.

8.2.3. Continuous wavelet transform in com-
bination with basis function selection. Applying
the above mentioned techniques of basis
function selection to non-orthogonal wavelets
yields an interesting family of models called
wavelet networks (Zhang and Benveniste, 1992;
Zhang, 1994). Though they are computationally
less efficient than the wavelet shrinking algo-
rithms in low-dimensional cases, they allow one
to handle problems of moderately large dimen-
sions. The software package of wavelet networks
in Matlab language is available via anonymous
FTP (Zhang, 1993).

We need to recall some basic concepts of the
continuous wavelet transform at this point. We
only consider radial wavelets here. The con-
tinuous wavelet transform and its inverse
transform of a function f are given by (79) and
(80) respectively. These transforms use two
functions $(cp) and +(cp) E L@!‘), both radial

(i.e. depending only on 11~11, where 11. II denotes
the Euclidean norm in W”), known as the
synthesis and analysis wavelets. More specifically,
let $ and 4 be radial functions satisfying

I

3c
a-‘$(aw)4(ao) da = 1 VW E IWd, (78)

0

where $(u) and &(a) denote the Fourier
transforms of $(cp) and $(cp) respectively. Then,
for any function f E Lz(Rd), the following
formulae define an isometry between L2(Rd) and
a subspace of L,(R” X R,) (Daubechies, 1992):

u(a, t) = a’+“*
I

f G++#G(~ - t)) dv, (79)

f ((o) = 1 u(a, t)+(a(cp - t))a”-I’* da dt, (80)

where a E lR+ and t E Iw” are the dilation and
translation parameters respectively.

As discussed in detail in Delyon et al. (1995)
and Juditsky et al. (1995) the reconstruction
formula (80) immediately explains why
dilated/translated versions of the synthesis
wavelet 1+5 are good candidate basis functions.
Rewrite this formula as

f(q) = 1 u(a, t)$(a(cp - t))a”-“* da dt

=/ad’**(a(p-t))W[u(a,t)l

X a(dP’)‘2 lu(a, t)] da dt

= $
I

ad’2+(a(cp - t)) sign [u(a, t)]

X w(a, t) da dt,

where we have renormalized u(a, t) by a
constant factor C so that the function w(a, t) =
Cacd-‘)‘* Ju(a, t)l can be considered as a prob-
ability density function. Draw n independent
random samples (a,, ti)i=l....,n with density
w(a, t). Then construct

fn(q) = i $ a:“*+(aAp - tJ) sign [u(ai, t;)], (81)
I

which, thanks to the law of large numbers,
converges in L2 to the true function f when
n + ~0. This justifies using dilated/translated
versions of the synthesis wavelet tc, to build the
basis function set %. However, implementing the
above procedure would require the estimation of
the density function w(a, t), which is computa-
tionally expensive.

Results reported in Daubechies (1990) and
Kugarajah and Zhang (1995) about the so-called
wavelet frames justify using wavelet families of

1712 J. Sjijberg et al.

the form {I,G((Y&G - k/3,) : j E Z, k E Hd}.
Therefore, in practice, wavelet basis function sets
3 (as introduced in (77)) are constructed from
wavelet frames. Then, applying the algorithms of
basis function selection yields wavelet networks
(Zhang, 1994).

9. ENCODING PRIOR INFORMATION VIA
SYNTACTIC FUZZY MODELS

We have claimed in Section 4 that fuzzy
modeling can be seen as a particular choice of
basis functions. We shall make this point clearer
in this section. In addition, we discuss in detail
what is the add-on provided by fuzzy modeling.
We first introduce fuzzy models such as typically
used in fuzzy control (Lee, 1990). Several
presentations are possible, (see e.g. Takagi and
Sugeno, 1985; Sugeno and Yasukawa, 1993;
Zadeh et al., 1994). The presentation we give
here is slightly heterodox, but is simple and
consistent.

9.1. Introduction to fuzzy logic also written
9.1.1. Fuzzy sets. Consider scalar input vari-

ables generically written as p. A fuzzy set on R is
defined by a linguistic label A, and its
membership function CL*: cp E RHEA E [0, 11.
The membership function p, is the mathematical
meaning of ‘fuzzy set A'. Thus, for each actual
value of cp, the statement ‘q is A' has a value
equal to ~~(40) such statements are premises of
so-called ‘fuzzy rules’. A typical form of such
statements is ‘cp is large'. Be careful that this
statement does not convey any information
unless the membership function pA of the fuzzy
set large is specified. A frequently used form
for membership functions is just a symmetric
triangle, with parameterized width (‘dilation’)
and location, as illustrated by Fig. 5.

is a macro that expands into

(y is B) or not (cpis A)

In the sequel we shall encode the ‘and' as the
product: and (u, u) = uu, with corresponding
codings for the ‘not, or'. Finally, the implica-
tion is expanded as follows.

Denote by PA the membership function
associated with fuzzy set A, and by /.LA+B the
membership function of ‘if cp is A then y is B'.
Using the formulae

(u+u)=(u or not u)=u+(l-u)-u(l-u)

= 1 - u + uu,
9.1.2. Fuzzy operators. Fuzzy sets can be

combined using the ‘and, or, not ’ operators of
first-order predicate logic. This allows one to
describe the combination of membership func-
tions using syntax. For instance,

we obtain an expression of implication (Reich-
enbach implication, in the literature):

(cpl is A,) and (qz is A,) . . . and (qais AdI

is a fuzzy set involving the vector (cpl, . . . , (PJ.
This implication models a certainty rule of the
form the more ‘cp is A', the more certain ‘y is B',
(see Dubois and Prade, 1992).

small medium large

Fig. 5. Fuzzy sets. This picture shows fuzzy membership
functions corresponding to ‘small’ etc. The corresponding
membership function is in fact of the form ~(0, x), where 0
is a parameter specifying the exact location, and width,

within some parametrized family of basis functions.

The keyword ‘and' is a combinator of fuzzy sets,
which must be defined formally in terms of
combination of membership functions. Similarly,
the operators ‘or' and ‘not' should be
accordingly defined. Several choices have been
proposed by various authors (Dubois and Prade,
1992), the most widely used are

and (u, u) = min (u, u), or (u, u) = max (u, LJ),

and(u,u)=uu, or (u, u) = u + u - uu,

and (u, u) = max (0, u + u - l),
(82)

or (u, u) = min (1, u + u)

(corresponding definitions for ‘and' and ‘or' are
written on the same line) and

not(u)= 1-u.

We now try to generalize the Boolean
implication operator in continuous-valued logic.?
As usual in logic, implication

(cp is A) implies (y is B)

if cpis Atheny is B

= I- PA(P)D - /-b(Y)I. (83)

9.1.3. Fuzzy reasoning: modeling ‘fuzzy maps’
via fuzzy rules. Fuzzy rules are statements of the
form

ifcpisAthenyisB

t This is the point where we deviate from the usual
presentation: in the fuzzy literature, implication is often
encoded as an ‘and’, and the modus ponens mechanism is
modified accordingly. We preferred this presentation, since it
is fully consistent and in accordance with the usual predicate
calculus.

Nonlinear black-box modeling in system identification 1713

Note that more complex premises can be used,
using ‘and, or, not'. The modus ponens is a
mechanism in logic that maps predicates into
predicates. Its counterpart in fuzzy logic allows
an approximate application, so that conclusions
can be drawn even though the fact does not
agree exactly with the first part of the rule. It can
be written as

rule: if cp is Atheny is B

fact: cp is A'

conclusion: y is B'

Here the fact ‘cp is A" can be seen as the ‘input’,
the conclusion ‘y is B" as the ‘output’, and the
fuzzy rule ‘if cp is A then y is B' is the ‘map’.
Thus, modus ponens is a mechanism that
combines membership functions and yields a
membership function. A typical example could
be that‘9 is A' is ‘The temperature is high',
and that ‘cp is P." corresponds to ‘The

temperature is very-high'.

In the general case the mathematical transla-
tion of the fuzzy modus ponens rule (Dubois and
Prade, 1992) is defined as

&f(y) = max {pa,(~) and I-LG&CP, y)), (84)
m

where elimination of 40 has been performed via
maximization. Note that, in general, facts and
conclusions are not ordinary numbers, but rather
are fuzzy sets.

9.1.4. Inference with crisp inputs. Now we
discuss the particular case of fuzzy reasoning
with crisp (input) fact statement, which is
directly related to our general nonlinear
black-box model formulation.

The fact A' in a statement ‘cp is A' ’ is crisp if
the membership function of A' is such that

Pi’ = 1 if cp = qo, and pA,((p) = 0 otherwise,
where cpo is an ordinary value. In this case the
modus ponens mechanism (84) reduces to

= I- ~-~.Jcpo)[l- E*B(Y)I (by (83)). (85)

Note that, even in the case of crisp input fact,
the conclusion B' is in general a fuzzy set.

9.2. Fuzzy rule bases as models
Now, what does all this mean in a

modeling/identification context? We shall first
describe how sets of rules can be used to state
the behavior of a system. The goal is to show the
connection with more conventional models, like
(3), and then also see how such fuzzy models can
be parameterized like (14) and (19).

9.2.1. Fuzzy rule bases. A ‘fuzzy rule basis’ is
a collection of fuzzy rules of the form, say

if (qol is A;,,) . . . and icp, is A,,,) then (y
is B,)

(86)

if ('pl is A,,:) . . . and (qd is A,,,) then (y
is BP)

where the fuzzy sets A;, i are doubly indexed: i

is the index of the input coordinate, and j is the
index of the rule. We denote the membership
functions by p_ ,(tpJ and pB (y) respectively.

A simple example: a DC motor. Consider an
electric motor with input voltage u and output
angular velocity y. We should like to explain
how the angular velocity at time t, i.e. y(t),
depends on the applied voltage and the velocity
at the previous time sample. That is, we are
using the regressors q(t) = [q,(t) cp2(t)JT, where
q,(t) = u(t - 1) and cp2(t) = y(t - 1). Let us now
device a rule base of the kind (86), where we
choose A_, ; and A,, 1 to be ‘low-voltage’, Ai, 1

and A,,, to be ‘high-voltage’. We choose A,, z

and A,,, to be ‘slow-speed’, while A,, 2 and A,, r
are ‘fast-speed’. The membership function for
‘low-voltage’ is taken as pu,_, _(cp,) = p((p,, 3,4),
where

1 for x < a,

for a<x<b, (87)

b for bsx.

The membership function for ‘high voltage’ is
taken as CL,,,?,. = 1 - pA, :. The membership
functions for slow and fast speed are chosen
analogously, with breaking points 8 and
15 rad s-‘. The statements B, about the outputs
are chosen to be triangles with vertices located at
5, 10 and 20 rad ss’ respectively. We thus obtain
a rule base:

If vi(t) is low and q,(t) is slow then

y(t) is low

If q,(t) is low and q2(t) is fast then

y(t) is medium

If PI(t) is high and p2(t) is slow then

y(t) is medium

If q.(t) is high and q2(t) is fast then

y(t) is high

9.2.2. Combining rules. The rule base (86) is
at first sight quite different from the models we
have discussed in the other sections of this
article. To see the connections, we shall now give
its mathematical translation.

Combining fuzzy rules within our fuzzy rule
basis is interpreted as taking the ‘and' of their

1714 J. Sjbberg et al.

conclusions.? Then the fuzzy rule basis (86)
means

y is Bi and. . . andy is BA

where the fuzzy sets Bi are defined according to

(85).
Expressing the ‘and' combinator as the

product of membership functions, we get

)(LB’(Y) = ,Q /-&t(Y)

= fi (1 - It PA,,,km - PdYN}
j=l i=l

(by (85))

= 1 - 2 [l - PdYdI PA. (CPA
/=1 ;=I ‘I-

where we have used the approximation
&‘=, (1 - LQ) = 1 - XT=, u,, which is valid for
small Uj and large p.

Now, assume that the membership functions in
the rule basis are subject to the identity

This will be true if the membership functions
defined in each input domain form a strong fuzzy
partition, i.e. Xj ~~,,,((p;) = 1 holds for all qoi, and
if the rule basis is ‘complete’, i.e. it covers all the
cases in terms of the fuzzy sets defined in the
input domains (it is easy to verify that the DC
motor example above obeys this requirement).
In this case we have

I-LB’O) > = 2 PB,o) IfI PA,, ,(cP,). (89)
/=I i=l

9.2.3. Defuzzification. At this point, setting

cp = [cpl . . . Q], (89) defines a function mapping
points cp E lRd into fuzzy sets. To get a function in
the usual setting R’I+ R, we perform the
defuzzification of pB(y), using the so-called
‘height method’ (see Lee, 1990; Dubois and
Prade, 1992). Using property (88) again, we
finally get the ordinary function

Y = Ii Yii I? l-b, ,(cPi)l ’ 9 Yiwi(qO) = &T(P), t90)
j=l .\,=I / j=l

where cp = [cp, . . qd], yj is the point at which

P-LB, reaches its maximum value, and the
definition of the weight functions Wj(q) is
obvious. If (88) does not hold, then the above
defuzzification formula is modified accordingly
(Wang, 1992):

y = g(cp) = Z=l Yjwj(q)
ET=1 Wj(q) f

(91)

A rule basis may be directly built with crisp
conclusions, i.e. B, are ordinary values in (86). In
this case no defuzzification is needed.

t From our choice for implication, whereas if implication is
encoded as an ‘and’,
aggregated by an ‘or’.

intermediate results ~~~0)) are

9.3. Back to the general black-box formulation
With (91) or (90) we are now back to the

predictor model form we discussed in Section 2:
a mapping from the regression vector cp to the
(predicted) output.

Now, if some or all of the rules in the rule
base need ‘tuning’, we may introduce parameters
to be tuned. These parameters could be all or
some of the numbers Yi in (90) or in (91). For
example, if y, is unknown, it could be replaced by
an adjustable parameter c+

Parameters can also be introduced in the
membership functions. Usually, fuzzy set mem-
bership functions are parameterized functions of
the form

E.LA(VD, Pt Y) = /-@(cp - Y)), (92)

where I is a given function with values in
[0, 11, p is a dilation factor and y is a translation
factor, and the pair (p, y) encodes the fuzzy set
A. Mostly used is the piecewise-linear function p
such that ~(1) = 1 and I = 0 for cp outside
the interval [0,2].

When parameters are introduced in this way,
the model (90) takes the form

Y = g(cP, e, = ,z, (yjgj(40, P* Y), (93)

where the ‘basis functions’ gj are obtained from
the parameterized membership functions as

gi(Vj Py Y) = JfJ PA,, (Pji(9i - Yji)). (94)

We are thus back to the basic situation of (19)
and (20), the only difference being that the basis
functions g, are created by dilation and
translation of a basic function E_L((P) in a more
complex way than in (20). The estimation of the
free parameters 8 in (93) still follows the general
theory.

If the fuzzy partition is fixed and not
adjustable (i.e. /? and y are fixed) then we get a
particular case of the kernel estimate (29).
Identified fuzzy models are often referred to as
‘neuro-fuzzy models’ in the AI literature
(Glorennec, 1993), since the back-propagation
procedure can be used for their training, as for
neural networks. It is also proved that fuzzy
models are universal approximators
(Wang, 1992), which is not surprising.

To summarize, fuzzy models are described by
fuzzy rule bases, plus some additional para-
meters that make vague statements such as
‘large’ and ‘small’ precise in terms of member-
ship functions. The fuzzy rule basis exhibits the
structure of the model, plus some coarse features
related to the location of the elementary

Nonlinear black-box modeling in system identification 1715

functions in the decomposition (90) or (91). Thus
fuzzy models are just particular instances of the
general model structure (19) with the advantage
of providing the fuzzy rules as a way to describe
some possibly available prior knowledge. In the
experiments reported in Section 10, neuro-fuzzy
modeling is used in the above sense. Also, in
Juditsky et al. (1994) an extension of the classical
fuzzy modeling syntax is proposed to encompass
multiresolution model structures, such as wavelet
decompositions or networks.

10. SOME EXPERIMENTS

In this section we present some application
examples of nonlinear black-box modeling, in
order to give the reader some practical insights.
They cover dynamic system modeling, static
system modeling and fuzzy system modeling.

10.1. Modeling a hydraulic robot actuator
In this section we shall study identification of a

hydraulic actuator. We shall consider both linear
models and nonlinear black-box ones, based on
neural networks and wavelet networks.

The data. The position of a robot arm is
controlled by a hydraulic actuator. The oil
pressure in the actuator is controlled by the size
of the valve opening through which the oil flows
into the actuator. The position of the robot arm
is then a function of the oil pressure. A thorough
description of this particular hydraulic system is
given in Gunnarsson and Krus (1990). Figure 6
shows measured values of the valve size u and
the oil pressure y, which are input and output
signals respectively. As seen in the oil pressure,
we have a very oscillatory settling period after a
step change of the valve size. These oscillations
are caused by mechanical resonances in the
robot arm.

OUTPUT Xl

INPUTLI

:;_:-_n.;;-1

0 100 203 300 4w 500 600

Fig. 6. Measured values of oil pressure (a) and valve position

(b).

A linear model. Following the principle ‘try
simple things first’ gives an ARX model that
predicts the output by the three most recent past
outputs and the two most recent past inputs, i.e.
the regression vector cp = [Y(l - 1) Y(t - 2)
y(t - 3) u(t - 1) u(t - 2)lT, where y and u are
the output and the input of the system
respectively. In Fig. 7 the result of a simulation
with the obtained linear model on validation
data is shown. The result is not very impressive.

A neural network model. Next, a NARX model
based on an one-hidden-layer sigmoid neural
network with 10 hidden units is considered, as
described in Section 4. The same regressor as for
the linear model is used, and this gives a model
with 71 parameters. In Fig. 8 it is shown how the
quadratic criterion develops during the estima-
tion for estimation and validation data respec-
tively. For the validation data, the criterion first
decreases and then starts to increase again. This
is the overtraining described in Section 7.4. The
best model is obtained at the minimum, and this
means that not all parameters in the nonlinear
model have converged and hence the ‘efficient
number of parameters’ is smaller than dim 8 =
71.

The parameters that give the minimum are
then used in the nonlinear model. When this
model is simulated on the validation data, it
gives a root mean square (RMS) error of 0.467
which is considerably smaller than the 0.942
obtained with the linear model.

A wavelet network model. Now another NARX
model based on a wavelet network is considered
to model the hydraulic actuator in a similar way,
with the same regressors. The wavelet function
used is $(cp) = (d - cpTq)e-VTV’2, with d = dim p.

oq.It Y 1 Fii: 0.9419
4

3 n :i I

1;
-4 1

0 100 200 300 400 500 600

Fig. 7. Simulation of the linear ARX model on validation
data. The solid line shows the simulated signal and the

dashed line the true oil pressure.

1716 J. Sjiiberg et al.

Fig. 8. Sum of squared error during the training of the
NARX model. The solid line shows the validation data and

the dashed line here: estimation data.

The dilation matrices Pk in (26) were chosen as
multiples of the identity matrix. First, we apply
the SSO procedure (see Section 8.2), which
iteratively selects wavelets into the model. By
Akaike’s final prediction error criterion, the
number of wavelets nh is chosen to be 3,
corresponding to 27 model parameters. Then the
NARX model issue of this iterative construction
is used to simulate the output of the robot arm
on the validation data. The corresponding RMS
error on the validation data is 0.647. Finally, the
NARX model is refined by 10 iterations of the
Levenberg-Marquardt procedure and is used for
simulation in the same way as above. The result
is depicted in Fig. 9, and the RMS error becomes
0.579. We can see that the Levenberg-
Marquardt procedure only slightly improved the
result. This suggests that the iterative construc-
tion method found a model parameter close to a
local minima searched by the Levenberg-
Marquardt procedure.

4

Fig. 9. Simulation of the nonlinear wavelet network NARX
model on validation data. The solid line shows the simulated

signal and the dashed line the true oil pressure.

Other nonlinear structures. The two nonlinear
models considered so far have been obtained by
just plugging in the regressor into the nonlinear
structure. We can also try some of the structures
suggested in Section 3.4.

The structure (16) based on the assumption of
additive noise gives us a NARX model that is
linear in past y(t). The parameter estimation
becomes much easier with this model structure.
Fewer parameters speeds up the numerical
search, and a model that is linear in some of the
regressors also has less of a problem with local
minima.

It turns out that, with this structure, it
becomes advantageous to include two more
regressors to those we had before, and the
predictor model becomes

j(t) = g(u(t - l), . . , u(t - 3))

+ a,y(t - 1) + . . + a,y(t - 4), (95)

where g is modeled by a neural net with four
hidden units. This gives a model with 25
parameters which is about a third compared to
the number of parameter of the first neural net
model. This time there are no problems with
overlearning during the estimation of the
parameters. Simulating this model in the same
manner as with the other models gave an RMS
error of 0.400.

If the linear part of the model (95) is replaced
by a neural net then we obtain a NARX model
consisting of two neural nets as in (17). This
gives us more flexibility than if the model is kept
linear in past y(t), but not quite so much as in
the first model, where all regressors where fed
into one large network. With three units in each
neural net, one obtain a model with 35
parameters. The RMS error for simulation on
validation data became 0.328; the simulation is
depicted in Fig. 10.

10.2. Modeling a gas turbine
Gas turbines are power motors, typically used

in electrical power generators and aircrafts.
Usually a gas turbine system is mainly composed
of a compressor, one or several combustion
chambers and an expansion turbine, as illustr-
ated in Fig. 11.

One of the purposes of our joint study with
European Gas Turbine SA, Belfort, and
Alcatel-Alsthom-Recherche, Marcoussis, was to
develop a monitoring and diagnostics system for
the joint system {combustion chambers, expan-
sion turbine}. For this purpose, a semiphysical
model has been developed that predicts the
temperature profile of the exhaust gas. Owing to
the phase shift of the gas in the turbine, this

Nonlinear black-box modeling in system identification 1717

-4' I
0 100 2M) 300 400 500 600

Fig. 10. Simulation of the nonlinear neural network NARX
model on validation data. The solid line shows the simulated

signal and the dashed line the true oil pressure.

semiphysical model is strongly nonlinear (Zhang,
1991; Zhang et al., 1994).

Eighteen thermocouples t,, . . . , t18 are in-
stalled at the exhaust of the turbine to measure
the output temperature profile. The compression
rate 5 of the compressor and the rotation
velocity w of the turbine are also measured. As
suggested by the semiphysical model, we have
chosen the average of the measurements of the
18 thermocouples T,, 5 and w as regressors, i.e.

cp = K 5 WIT, and the deviations from the
average T, of the thermocouples y, = t, - T,,
i=l,..., 18, as outputs of the black-box model.

We have experimented with this approach on
the data taken from a gas turbine of European
Gas Turbine SA. The training data were
collected during about 48 h. We have resampled
the data and kept only 1000 measurement points
for model estimation. For the sake of brevity, we
shall show only the results concerning the first
thermocouple. The models obtained are tested
on another set of measured data, which we refer
to as the validation data Z,.

We have tested the semiphysical model, a
linear regression model and wavelet network
models. For the wavelet network model, we have
chosen the radial wavelet function $(cp) =
(d - (pTq)ePmTv’2, with d = dim cp. The number of
wavelets used in the networks is 40, correspond-
ing to 204 model parameters. We initialize the
wavelet networks with each of the constructive
procedures (RBS, SSO and BE, as described in
Section 8.2), and optimize them with the
Levenberg-Marquardt procedure.

--I

Fig. 11. A gas turbine system.

The results are summarized in Table 1. The
outputs corresponding to the validation data Z,
predicted by the linear regression model and by
a wavelet network model are plotted in Fig. 12.
Though by the values of the RMS errors in
Table 1, the linear regression model is not too
bad compared to other models; the plots in Fig.
12 show that the wavelet model does significantly
improve the prediction accuracy.

Sigmoid neural networks have also been tested
on this example; the results are similar to those
obtained with wavelet networks.

The nonlinear black-box models perform
better than the semiphysical model in terms of
output prediction. This is at the price of much
greater computational complexity. On the other
hand, the semiphysical model, though less
accurate, allows one to perform a physical
diagnosis of the system faults (Mathis, 1994); in
contrast, the black-box models give one the
possibility to implement a finer global alarm of
the monitoring system (see also Mathis, 1994),
but the model parameters do not provide any
physical information for fault diagnosis.

10.3. Modeling glycemic variations
This is a medical example illustrating the use

of fuzzy models.

10.3.1. Describing the problem. Glycemic va-
riations depend on several factors that are not
easily quantifiable and, moreover, may vary with
time. Food diet, physical activity, stress and
emotions and proximity of meal have effects that
doctors know how to assess qualitatively. For a
healthy person, glycemic regulation is ensured
via the secretion of insulin by the pancreas. In
case of organic deficiency, for diabetics, insulin
must be injected artificially. Deciding the
amount for injection is very difficult, because
morphology, future physical activity, time of
meal, glucide richness of meal, present glucose
concentration and results of the previous day,
have to be taken into account. Moreover,
injected insulin acts with delay, and its efficiency
reduces as glucose concentration gets higher.
Lastly, hypoglycemia is almost always followed
by hyperglycemia. For an optimum glycemic
control, it would be better to anticipate before
the glucose level rises, as it occurs for endogenic
insulin secretion in healthy persons. To sum-
marize, we have to deal with a nonlinear
unstable system with time delay.

Doctors have devised empirical rules allowing
diabetics to compute themselves the approxim-
ate insulin level for injection. For diabetics using
a pump, the insulin injection rate has two parts:
the basic flow rate, denoted by B,(t), and

1718 J. Sjoberg et al.

Table 1. Performance evaluation of the turbine models

RBS net SSO net BE net Semiphysical Linear

Init. RMS 0.0743 0.0708 0.0719
Opt. RMS 0.0729 0.0743 0.0698 0.1136 0.0922
Init. flops 2.0718 x 10’ 4.3714 x lox 7.5143 x 10’
opt. flops 1.5365 x 10’ 1.5365 x 10’ 1.5365 x 10’ 9.8041 x 10x 9.6272 x 104
Init. time (s) 41.6 251.2 87.2
Opt. time (s) 2461.8 2383.8 2456.5 2265.0 0.1921

RBS net, SSO net and BE net are the wavelet network models initialized by RBS, SSO and BE
procedures respectively. RMS is the root mean square error, and is evaluated on the validation data
2,. For the network models, Init. RMS corresponds to the initialized model, and Opt. RMS
corresponds to the model optimized by 10 iterations of the Levenberg-Marquardt procedure. Flops
is a Matlab measure of computational burden. The computation time is based on programs in the
Matlab 4.2 language executed on a Sun Spare-2 workstation.

providing about 50% of daily insulin needs, and
a variable part, the bolus, denoted by B,(t),
which is a flash injection to assimilate a recent
meal.

Nevertheless, despite doctors experience, it is
very difficult to manually obtain a more or less
constant glycemic level, in part because a good
control should take into account up to six input
variables, which is far beyond human control
capability. This motivated us to propose a
predictive glycemic model as a basis for
automatic injection control. This model uses as a
basis the empirical rules of doctors, and takes
into account the qualitative nature of available
data. For this proposal, we have several
‘self-supervision notebooks’, i.e. daily support to
control the context and the treatment of
insulin-dependent diabetic patients under pump
operation. Thus, each day the diabetic writes on
his or her notebook

(i) time and actual glycemia;

(ii) time, importance and quality of the meal;

(iii) activity;

(iv) insulin injection.

1

(a)
0.9-

11 c

0.6

0.7

0.6

0.5

04

03

0.2

0.1
0 50 100 150 200 250 300 350

Experimental results on this case study are
now reported.

10.3.2. The variables of interest and their
qualitative labels. Diabetologists’ knowledge is
expressed under the form of ‘rule of thumb’
advice. We have used this knowledge to build a
two-hour-ahead predictive model of glycemic
variations. This predictive model will be
subsequently used in a control system. We have
restricted our model to six inputs (the current
instant t is omitted for simplicity) as described in
Table 2. The output is the predicted variation of
glycemic at time t+2h, DG(t+2) E{PVB, PB,

PM, Ps, z, NS, NM, NB, NVB}, where P means
‘positive’, N ‘negative’, S ‘small’, B ‘big’, etc.
Figure 13 shows membership functions of
glycemia, where the parameters (g;)fl=, must be
determined by learning, since their optimal value
depends on the patient. Membership functions
have been represented by simple first-order
splines with free knots. Our method follows the
following two steps.

1. Start with an initial guess of the model, based
on available (qualitative) prior knowledge.

2. Tune this model to the particular patient

1

(b) I

0.11 I ,
0 50 100 150 200 250 300 350 400

Fig. 12. Comparison on the validation data Z, of the predictions by the linear regression model (a) and by the wavelet network
initialized by the BE procedure (b). The solid lines represent the true measurements and the dashed lines the outputs of the

models.

Nonlinear black-box modeling in system identification 1719

Table 2. Fuzzy input variables

Item Symbol Fuzzy values

Glycemia Gl
very LOW Low Normal High Very High

(VL) (L) (N) (HI (VH)

Basis insulin
injection rate

Ba Low, Normal, High

Flash insulin
injection rate

Bo Low, Normal, High

Elapsed time
since previous meal

Dr Far Before, Near, Just After, Far

Diet Nr Fiber, Normal, Glucidic

Expected
future activity

AC Low, Normal, High

under consideration, by performing learning
or optimization from available data.

10.3.3. Expressing prior knowledge. Com-
bining all possible qualitative values for the
different inputs yields 1620 different cases,
corresponding to the same amount of candidate
fuzzy rules. In fact, only 64 rules were
considered for our prior model, thus reflecting
the actual domain for the input variables where
meaningful knowledge exists. Examples of such
rules are

if (GL(t) is VL) and (Nr(t) is N) then

DG(t+2) is PB

if (GL(t) is L) and (Ba(t) is L) then

DG(t+2) is NS

Figure 14 shows predicted glycemia at t + 6 from
glycemia at time t, with S = 2 h, before learning,
i.e. with use only of the prior model. The solid
line shows the actual glycemia and the dashed
line the predicted one. The doctors’ rules are
quite efficient in predicting the effect of insulin
injections. Still, some spikes occur in the
prediction error. The prediction error has mean
p = -0.20 and standard deviation g = 0.38.

10.3.4. Tuning the model for each patient.
Using data from a patient’s notebook, we
divided the data file into two parts: one for
learning and the other for validation (i.e.
testing). Figure 15 shows predicted glycemia at
t + 2 from glycemia at time t, after learning, i.e.

subsequent learning of the gi parameters on data.
The prediction error has mean I_L = -0.0003 and
standard deviation g = 0.29. Some improvement

go 81 82 g3 %

Fig. 13. Fuzzy partition for glycemia.

is seen; note that such an improvement is likely
to be patient-dependent. The errors around time
steps 700 and 800 are due to catheter changes (as
marked in the notebook) which usually lead to
the injection of more insulin than expected.

10.3.5. Comments and conclusions about this
example. The following conclusions can be
drawn from this example.

Fuzzy rules turned out to be a convenient way
to express prior knowledge from doctors-in
part because this prior knowledge is mainly
qualitative. It is important to notice that this
fuzzy rule basis was far from being equivalent
to an exhaustive table describing the input-
output map, since only a few percent
(64/1620) of this table was described by the
rules. This restriction is by itself a useful prior
information about the range of validity of the
modeling.

Subsequent tuning of the prior model was
performed while preserving the structure of
the model; i.e., the fuzzy rules were not
modified-only the gi parameters hidden in
the splines were adjusted. It would also be

Fig. 14. Prior model: 2 h ahead prediction (dashed line)
versus actual (solid line) glycemia.

1720 J. Sjoberg et al.

Fig. 15. Model after learning: 2 h ahead prediction (dashed
line) versus actual (solid line) glycemia.

possible to use our prior model as initial guess
but allow other ‘rules’ to be introduced via
learning; corresponding experiments are under
progress.

Another advantage of describing the model
via fuzzy rules is the possibility to ‘decompile’
the model after learning, again in the form of
fuzzy rules, for return to the user (doctor or
patient). Returning a mathematical model
would be of little use for the average user,
having no training in mathematics.

11. SUMMARY AND RECOMMENDATIONS

System identification cannot be fully formal-
ized and automated. A user must always blend
his or her experience and commonsense with
established theory and methodology. In this
section we take the position of a user with
relevant software support available. Assume that
we have collected input-output data from a
system and shall estimate a model based on
them. What are the things to consider for a
successful result?

11.1. Some general concerns

Look at the data. This is the first and obvious
step. It is often very revealing. Nonlinear effects
can often be detected by visual inspection: are
responses similar at different levels and in
different directions? What time constants can be
seen. and so on?

Try simple things first. A good engineering
principle is to try simple things first. In the
identification context, ‘simple’ may mean both
the size and the computational complexity of
models. In practice, it certainly means that one
should try linear models first, to see if they can
solve the problem, and if not, get some insight

into their shortcomings. From a theoretical
estimation point of view, simplicity refers
primarily to the number of estimated para-
meters. By searching from simpler to more
complex models until a valid one is found,
typically a good trade-off between bias and
variance can be achieved.

Look into the physics. Physical insights may
suggest to (linearly or nonlinearly) transform
raw measurements into new regressors. Try to
use such semiphysical regressors (cf. Section 3.3)
first in linear black-box structures. Only if this
gives unsatisfactory results, or if physical insight
is completely lacking, it is time to move to the
nonlinear black-box structures described in this
paper. Even for these models, it makes sense to
use semiphysical regressors.

The bias-variance trade-ofi The bias-variance
trade-off (43) tells us that one should not
excessively increase the number of estimated
parameters (i.e. the number of basis functions in
the model). The ultimate improvement of the
model quality could be obtained by suitably
choosing basis functions that would require
physical knowledge and lead to physical models.

Validation and estimation data. The best way to
evaluate an identified model is to test it on fresh
data (that were not used for model estimation).
We have pointed to this use of validation (or
‘generalization’) data for determining the model
complexity-the Bias-Variance trade-off-both in
terms of model structure complexity, size of
regularization parameter and when to stop the
iterations. Checking out a potential model on
validation data has a clear pragmatic appeal: can
it reproduce previously unseen data in a
satisfactory manner? Then it must be of some
use.

The notion of eficient number of parameters.
The variance contribution to the model output
error in (40) is, principally, proportional to the
number of parameters used in the model
structure, if they have been estimated by
minimization of (34). This means that a
parameter that is not so important for the model
fit will still contribute as much as an important
parameter to the variance error. The intuitive
explanation is that the unimportant parameter
will be estimated very inaccurately, so, even
though its influence is small on the fit, its large
errors will still be damaging.

It is thus tempting to have estimation schemes
that reward the ‘important parameters’. There
are a number of possibilities. Regularization,
which was reviewed in Section 6.4, is the classical

Nonlinear black-box modeling in system identification 1721

method. A variant of regularization is to stop the
iterations in the minimization of (34) before the
true minimum has been found, as described in
Section 7.4. A third way of focusing on
important parameters is to first estimate ‘many’
and then discard those that are ‘small’, and then
possibly re-estimate the values of the remaining
ones. This is what we called shrinking and basis
function selection in Section 8. The remaining
number of parameters will essentially determine
the model variance error.

11.2. Structural issues to consider
11.2.1. Regressor selection. A rational ques-

tion to ask would be as follows. Given that I am
prepared to use d regressors, how should I
distribute these over the five possible regressor
choices listed in Section 3? There is no easy and
quantitative answer to this question, but we may
point to the following general aspects.

A first choice to consider consists in trying
static models, i.e. taking only u(t) as the
regressor.

Including u(t - k) only, k = 1,2, . . . , requires
that the whole dynamic response time is
covered by past inputs. That is, if the
maximum response time to any change in the
input is Y and the sampling time is T then the
number of regressors should be Y/T. This
could be a large number. On the other hand,
models based on a finite number of past inputs
cannot be unstable in simulation, which is
often an advantage. A variant of this approach
is to form other regressors from u’, for
example by Laguerre filtering (see e.g.
Wahlberg, 1991). This retains the advantages
of the FIR approach, at the same time as
making it possible to use fewer regressors. It
does not seem to have been discussed in the
context of nonlinear black boxes yet.

Adding y(t - k) to the list of regressors makes
it possible to cover slow responses with fewer
regressors. This is quite important for
nonlinear models, since trying to achieve the
same objective with more delayed inputs is
much more prohibitive than for linear models.
A disadvantage is that past outputs bring in
past disturbances into the model. The model is
thus given an additional task to also sort out
noise properties. A model based on past
outputs may also be unstable in simulation
from input only. This is caused by the fact that
the past measured outputs are then replaced
by past model outputs.

Bringing in past predicted or simulated
outputs y^ (t - k 1 19) or past values from other

nodes in the network that may be interpreted
as state variables may be quite useful. It
typically increases the model flexibility, but
also leads to non-trivial difficulties, related to
the recurrent nature of the resulting network.
See Section 4.3. Two problems must be
handled.

(i)

(ii)

It may lead to instability of the network,
and, since it is a nonlinear model, this
problem is not easy to monitor.
The regressors that are fed back depend
on 8. In order to do the minimization
iterations in the true gradient direction,
this dependence must be taken into
account, which is not straightforward. If
the dependence is neglected, convergence
to local minima of the criterion function
cannot be guaranteed.

The balance of this discussion is probably that
the NARX regressors (y(t - k), u(t - k)) should
be the first to test.

11.2.2. Choice of basis functions. Now that the
regression vector cp has been decided upon, the
question is which function expansion (19) to use.
We thus return to the choices listed in Section
4.2. This is a more difficult decision, and the
collected experience on this is not yet substan-
tial. All of the model structures described are
capable of approximating any reasonable func-
tion. The question is to pick one that ‘suits the
application’, in the sense that only few terms will
be needed.

Curse of dimensionality. The dimension of the
regression vector is d, so the function to be
approximated by (19) has aB” as its domain. Even
for moderate d, the observations cp are by
necessity very sparse in any bounded region of
R” of practical interest. For example, it takes
N = 10” observations to fill up the unit cube in
[WI’, even with a coarse component-wise grid of
granularity 0.1. This consideration is important
for the choice between basis functions obtained
by radial constructions and ridge constructions.
See below.

Radial constructions. In view of the curse of
dimensionality, local basis functions are a prime
choice when the dimension of the regression
vector is rather low. For d 5 3, the wavelet basis
function expansion would be an excellent choice,
since the wavelet coefficients can be estimated
very efficiently. For somewhat larger values of d,
it is natural to try out wavelet networks and
radial basis networks. For large values of d,
model structures based on local basis functions

1722 J. Sjiiberg et al.

will simply not support any model statements
outside the areas where observations have been
made (which is not unreasonable).

Multiresolution aspects. A very useful feature of
the wavelet models is that the scale parameters
can be chosen very differently. Certain areas in
the data space can be covered by basis functions
with large support, while others can be covered
with much finer resolution. Also one and the
same region may be covered by both types, to
pick up both fine details and courser trends. This
could be a useful way to deal with the lack of
data in certain regions. One may note, though,
that the curse of dimensionality not only relates
to the possible lack of supporting data. Any
prior seed of basis functions to be screened with
the help of data will also be huge in high
dimensions, and that may be a major obstacle. A
solution has been proposed in Section 8.2: scan
the available data and pick only those basis
functions that contain enough data points in
their supports.

Ridge constructions. Ridge constructions, like
those used in sigmoidal neural networks and the
hinging hyperplanes networks, deal with the
curse of dimensionality by extrapolation. This
means that the functions identify certain
directions in (y, cp) space where ‘not much
happens’. In other words, these are projection
directions that would show clear data patterns in
the projected picture. These directions are
chosen as the global ones. The approach thus has
clear connections with projection pursuit
(Friedman and Stuetzel, 1981). The advantage is
that higher regression-vector dimensions can be
handled, by extrapolation into unsupported data
regions. Whether or not this is reasonable,
depends of course on the application. Experi-
ence indicates that the approach is often
successful.

Basis functions by prior verbal information.
Building up the basis functions from fuzzy logic
and fuzzy rules is another way of dealing with
the curse of dimensionality. The extrapolation
into unsupported data regions is then done based
on the prior knowledge (right or wrong) about
the system’s behavior. In the regions where the
model is supported by data, it is modified
according to the information in the observations.
A perhaps even more important aspect of the
choice of basis functions via fuzzy sets is the
specification of the domain of interest, i.e. the
areas where input data are expected. This seems
to be a quite appealing way to deal with partial
data information.

12. CONCLUSIONS

In the toolbox for system identification
techniques one should have black-box models
for nonlinear dynamical systems available. It is
true that it is preferrable to use physical insight
to build up the nonlinear effects in a model,
since this typically can be done using fewer
parameters. However, such insight is not always
available, and if linear approximative models are
not good enough then there is no other choice
than to turn to black-box structures.

This topic is not at all new. The ‘classical’
literature on the subject seems to have
concentrated on global basis function expan-
sions, such as Volterra expansions. These have
apparently had limited success. The topic was
really revived by the onslaught of neural
network applications.

In this paper we have treated most of the
possibilities for black-box nonlinear dynamical
models in a common framework. We have
pointed to the similarities in the different
approaches, and we have tried to pinpoint what
the real choices are. The bottom line is that
there is a choice of basis functions. Each of the
basis functions also carry some parameters to let
them adjust to the observed data. These
parameters typically correspond to scale and
location of the function support. Scale and
location, as well as function coordinates, can
either be estimated by one joint minimization
process or by a first, separate, step to fix location
and scale.

The perspective of this paper has been the
user%. We have not given details about
approximation theory or properties of the
function expansions. We have focused on the
choices that the user has to make for a successful
application. More mathematical investigations
can be found in the companion paper by
Juditsky et al. (1995).

REFERENCES

Barron, A. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Trans. Inf
Theory, IT-39,930-945.

Baum, E. and F. Wilczek (1988). Supervised learning of
probability distributions by neural networks. In D.
Andersson (Ed), Neural Information Processing Systems,
pp. 52-61. American Institute of Physics, New York.

Breiman, L. (1993). Hinging hyperplanes for regression,
classification and function approximation. IEEE Trans.
1nf Theory, IT-39,999-1013.

Brown, M. and C. Harris (1994). Neurofuzzy Adaptive
Modelling and Control. Prentice-Hall, New York.

Chen, S. and S. Billings (1992). Neural networks for
nonlinear dynamic system modelling and identification. Int.
J. Control, 56,319-346.

Nonlinear black-box modeling in system identification 1723

Chen, S., S. Billings, and P. Grant (1990). Non-linear system
identification using neural networks. Inc. J. Control, 51,
1191-1214.

Chen, S., S. Billings and W. Luo (1989). Orthogonal least
squares methods and their application to non-linear system
identification. Inr. J. Control, 50, 1873-1896.

Chen, S., C. Cowan and P. Grant (1991). Orthogonal least
squares learning algorithm for radial basis function
networks. IEEE Trans. Neural Networks, NN-2,302-309.

Chui, C. (1992). Wavelets: a Tutorial in Theory and
Applications. Academic Press, Boston.

Cover, T. and J. Thomas (1991). Information Theory. Wiley,
New York.

Cybenko, G. (1989). Approximation by superposition of a
sigmoidal function. Math. Control, Signals and Syst., 2,
303-314.

Daubechies, 1. (1990). The wavelet transform, time-
frequency. IEEE Trans. lnf Theory, IT-36,961-1005.

Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-
NSF Regional Series in Applied Mathematics, SIAM.

De Boor, C. (1978). Practical Guide to Splines. Springer-
Verlag, New York.

Delyon, B., A. Juditsky and A. Benveniste (1995). Accuracy
analysis for wavelet networks. IEEE Trans. Neural
Networks, NN-6, 332-348.

Dennis, J. and R. Schnabel (1983). Numerical Methods for
Unconstrained Optimization and Nonlinear Equations.
Prentice-Hall, Englewood Cliffs, NJ.

Devroye, L. and L. Gyorti (1985). Nonparametric Density
Estimation. Wiley, New York.

Draper, N. and H. Smith (1981). Applied Regression
Analysis, 2nd edn. Wiley, New York.

Dubois, D. and H. Prade (1992). Fuzzy sets in approximate
reasoning, part 1. Fuzzy Sets and Systems, 40, 143-202.

Friedman, J. and W. Stuetzel (1981). Projection pursuit
regression. J. Am. Statist. Assoc., 76, 817-823.

Friedman, J. and W. Stuetzle (1981). Projection pursuit
regression. J. Am. Statist. Assoc., 76, 817-823.

Glorennec. P. (1993). A general class of fuzzy inference
systems. In Proc. CES2 Conf, Prague, Vol. III, pp.
1039-1048.

Gunnarsson, S. and P. Krus (1990). Modelling of a flexible
mechanical system containing hydralic actuators. Technical
Report, Department of Electrical Engineering, Linkoping
University.

Haykin, S. (1994). Neural Networks: a Comprehensive
Foundation. Macmillan, New York.

Helland, I. (1990). Partial least squares regression and
statistical models. Stand. J. Statist., 17, 97-114.

van den Hof, P.. P. Heuberger and J. Bokor (1994).
Identification with generalized orthonormal basis
functions-statistical analysis and error bounds, In
Preprints 10th IFAC Symp. on System Identification,
Copenhagen, Vol. 3, pp. 3.207-3.212.

Huber, P. (1985). Projection pursuit (with discussion). Ann.
Statist., 13, 435-475.

Juditsky, A., Q. Zhang. B. Delyon, P.-Y. Glorennec, and A.
Benveniste (1994). Wavelets in identification. Technical
Report, IRISA.

Juditsky, A.. H. Hjalmarsson. A. Benveniste, B. Deylon. L.
Ljung. J. Sjijberg and Q. Zhang (1995). Nonlinear
black-box models in system identification: mathematical
foundations. Automatica, 31, 1725-1750.

Kugarajah, T. and Q. Zhang (1995). Multi-dimensional
wavelet frames. IEEE Trans. Neural Networks, to be
published.

Kung. S. (1993). Digital Neural Networks. Prentice-Hall,
Englewood Cliffs, NJ.

Lee, C. (1990). Fuzzy logic in control systems, parts i and ii.
IEEE Trans. Svst.. Man. Cvber. SMC-20.

Ljung, L. (1987)’ System identification: Theory for the User.
Prentice-Hall. Englewood Cliffs, NJ.

Ljung, L. and T. Glad (1994). Modeling of Dynamic Systems.
Prentice-Hall, Englewood Cliffs, NJ.

Ljung, L. and T. Soderstrom (1983). Theory and Practice of
Recursive Identification. MIT Press, Cambridge, MA.

McAvoy, T. (1992). Personal communication.

MacKay, D. (1991). Bayesian methods for adaptive models.
PhD thesis, Caltech.

MacKay, D. (1992). Baysian interpolation. Neural Compuc.,
4,415-447.

Mallat, S. (1989). Multiresolution approximation and
wavelets orthonormal bases of 1’(r). Trans. Am. Mach.
Sot., 315, 69-88.

Mallat, S. and Z. Zhang (1993). Matching pursuit with
time-frequency dictionaries. Technical Report 619, Com-
puter Science Department, New York University.

Mathis. G. (1994). Surveillance de turbine a gaz. PhD thesis,
Universite de Rennes 1.

Matthews, M. (1992). On the uniform approximation of
nonlinear discrete-time fading-memory systems using
neural network models. PhD thesis, ETH, Zurich.

Meyer, Y. (1990). Ondelettes et Operaceurs. Hermann, Paris.
Moody, J. (1992). The effective number of parameters: an

analysis of generalization and regularization in nonlinear
learning systems. In J. Moody, S. Hanson and R.
Lippmann (Eds), Advances in Neural Information
Processing Sysrems 4. Morgan Kaufmann. San Mateo,
CA.

Nadaraya. E. (1964). On estimating regression. Theory of
Prob. and Applic. 9, 141-142.

Narendra. K. and K. Parthasarathy (1990). Identification and
control of dynamical systems using neural networks. IEEE
Trans. Neural Networks, NN-1 4-27.

Nerrand, 0.. P. Roussel-Ragot, L. Personnaz and G. Drefys
(1993). Neural networks and nonlinear adaptive filtering:
unifying concepts and new algorithms. Neural Comput., 5,
165-199.

Nerrand, 0.. P. Roussel-Ragot. D. Urbani. L. Personnaz and
G. Drefys (1994). Training recurrent neural networks: why
and how? An illustration-in dynamical process modeling.
IEEE Trans. Neural Networks. NN-5. 178-184.

Poggio. T. and F. Girosi (1990). Networks for approximation
and learning. Proc. IEEE, 78, 1481-1497.

Poggio. T. and F. Girosi (1990). Regularization algorithms
for learning that are equivalent to multilayer networks.
Science, 247, 978-982.

algorithm for hinging- hyperplanes. Technical Report
LiTH-ISY-R-1720. Deoartment of Electrical Eneineerine.

Pucar, P. and J. Sjoberg (1995a). On the hinge finding

Linkoping University (available by anonymous f&
130.236.24.1).

Pucar, P. and J. Sjoberg (1995b). On the parameterization of
hinging hyperplane models. Technical Report LiTH-ISY-
R-1717, Department of Electrical Engineering, Linkoping
University, (available by anonymous ftp 130.236.24.1).

Qian, S. and D. Chen (1994). Signal representation using
adaptive normalized Gaussian functions. Signal Process.,
36

Reed, R. (1993). Pruning algorithms-a survey. IEEE Trans.
Neural Networks, NN-4,740-747.

Rivals, I. (1995). Modelisation et commande de processus
par reseaux de neurones; application au pilotage d’un
vehicule autonome. PhD thesis, Ecole Superieure de
Physique et Chimie Industrielles de la Ville de Paris.

Rumelhart, D., G. Hinton and R. Williams (1986). Learning
representations by back-propagating errors. Nature, 323,
533-536.

Ruskai, M., G. Beylkin, R. Coifman. I. Daubechies, S.
Mallat, Y. Meyer and L. Raphael (Eds) (1992). Wuvelets
and Their Applications. Jones and Bartlett, Boston.

Saarinen. S., R. Bramley and G. Cybenko (1993).
Ill-conditioning in neural network training problems.
SIAM J. Sci. Comput. 14,693-714.

Schumaker, L. L. (1981). Spline Functions: Basic Theory.
Wiley, Chichester.

Silverman, B. (1986). Density Estimation for Statistics and
Data Analysis. Chapman and Hall, London.

Sjoberg, J. and L. Ljung (1992). Overtraining, regularization,
and searching for minimum in neural networks. In
Preprints 4th IFAC Symp. on Adaptive Systems in Control
and Signal Processing, Grenoble, pp. 669-674.

Sjoberg, J., H. Hjalmarsson and L. Ljung (1994). Neural
networks in system identification. In Preprints 10th IFAC

1724 J. Sjijberg et al.

Syrnp. on System Identification, Copenhagen, Vol. 2,
pp. 49-72 (available by anonymous ftp 130.236.24.1).

van der Smagt, P. (1994). Minimisation methods for training
feedforward neural networks. Neural Networks, 7, l-11.

Sontag, E. (1981). Nonlinear regulation: the piecewise linear
approach. IEEE Trans. Autom. Control, AC-26 346-358.

Sontag, E. (1993). Neural networks for control. In H.
Trentelman and J. Willems (Eds), Essays on Control:
Perspectives in the Theory and its Applications, pp. 339-
380. Birkhluser, Boston.

Stone, C. (1982). Optimal global rates of convergence for
nonparametric regression. Ann. Statist., 10, 1040-1053.

Sugeno, M. and T. Yasukawa (1993). A fuzzy logic based
approach to qualitative modelling. IEEE Trans. Fuzzy
syst. Is-l, 7-31.

Suykens, J., B. D. Moor and J. Vandewalle (1994). Static and
dynamic stabilizing neural controllers, applicable to
transition between equilibrium points. Neural Networks, 7,
819-831.

Takagi, T. and M. Sugeno (1985). Fuzzy identification of
systems and its application to modelling and control. IEEE
Trans. Syst. Man-Cyber. SMC-15, 116-132.

Taswell. C. (1993). Wavbox. Public domain MATLAB , \ I

toolbox (anonymous FTP: simplicity.stanford.edu:/
pub/taswell).

Wahba, G. (1987). Three topics in ill-posed problems. In H.
Engl and C. Groetsch (Eds) Inverse and ill-posed
Problems. Academic Press, New York.

Wahlberg, B. (1991). System identification using Laguerre
models. IEEE Trans. Autom. Control, AC-36,551-562.

Wahlberg, B. (1994). System identification using kautz

models. IEEE Trans. Autom. Control, AC-3,1276-1282.
Wang, L. (1992). Fuzzy systems are universal approximators.

In Proc. 1st IEEE Cant on Fuzzy Systems, San Diego,
pp. 1163-1169.

Wang, L. (1994). Adaptive Fuzzy Systems and Control:
Design and Stability Analysis. Prentice-Hall, Englewood
Cliffs, NJ.

Watson, G. (1969). Smooth regression analysis. Sankhya,
Ser. A, Z&359-372.

Werbos, P. (1974). Beyond regression: new tools for
prediction and analysis in the behavioral sciences PhD
thesis, Harvard University.

Weld, S., A. Ruhe, H. Wold and W. Dunn (1984). The
collinearity problem in linear regression: the partial least
squares approach to generalized inverses. SIAM .I. Sci.
Statist. Comput., 5, 743-753.

Zadeh, L. (1994). Fuzzy logic, neural networks, and soft
computing. Commun. ACM, 37,77-86.

Zhang, Q. (1991). Contribution a la surveillance de pro&d&
industriels. Thesis, Universite de Rennes I.

Zhang, Q. (1993). Wavenet. Public domain MATLAB
toolbox (anonymous FTP: ftp.irisa.fr:/local/wavenet).

Zhang, Q. (1994). Using wavelet network in nonparametric
estimation. Technical Report 833, IRISA.

Zhang, Q. and A. Benveniste (1992). Wavelet networks.
IEEE Trans. Neural Networks, NN-3,889-898.

Zhang, Q., M. Basseville and A. Benveniste (1994). Early
warning of slight changes in systems and plants with
application to condition based maintenance. Automatica,
30,95-l 13.

